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1 Introduction

GAMS (General Algebraic Modelling System) is a computer language which was originally de-
veloped to assist economists at the World Bank in the quantitative analysis of economic policy
questions (Meeraus (1983), Brooke, Kendrick and Meeraus (1987)). At the time of its conception
and initial development, linear programming (LP) was the standard framework in which market
equilibrium models were constructed. Subsequently, solution algorithms and codes for general non-
linear programming representations became more common and alternative economic paradigms
were developed. 1

During this time, GAMS was extended from an LP matrix-generator to accommodate general
nonlinear functions. GAMS was awarded the Computer Science Technical Section prize by the
Operations Research Society of America in 1987. The release of a PC-based version of GAMS in
1988 lead to its wide-spread recognition as an effective tool for the development of general purpose
large-scale mathematical programming models.

This paper introduces new features of the GAMS modelling language which permit formulating
economic equilibrium models as systems of nonlinear equations, complementarity problems or
variational inequalities. These extensions accommodate market and game-theoretic equilibrium
models which are not easily studied in an optimization context. These formulations are here referred
to as “mixed complementarity problems” (MCPs), reflecting the fact that they may incorporate
mixtures of equations and inequalities. 2

The MCP is a natural format for expressing a variety of economic models for both markets and
games. Computational evidence suggests that algorithms for solving MCPs are relatively reliable
and efficient, particulary for models which are not natural optimization problems.

The development of the GAMS/MCP modelling format was motivated by recent theoretical
and practical developments in algorithms for nonlinear complementarity problems and variational
inequalities. Some of these algorithms are extensions of classical methods for nonlinear equations.
Others exploit the variational structure which is characteristic of many economic equilibrium mod-
els (see Dafermos (1983)). The most recent techniques are based on ideas from interior-point
algorithms for linear programming (Kojima, Megiddo, Noma and Yoshise (1991)). A survey of
developments in the theory and application of these methods is provided by Harker and Pang
(1990).

At this time, two large-scale solvers are available through GAMS/MCP. MILES (a Mixed
Inequality and nonLinear Equation Solver) employs a modified Newton algorithm which was origi-
nally developed for applied general equilibrium modelling (see Rutherford (1987, 1993), and Anstre-
icher, Lee and Rutherford (1992)). PATH is a recently developed solver based on a promising new
path-following procedure (Dirkse and Ferris (1993), Ralph (1994)). Both codes incorporate implicit

1A chronology of these developments might include Samuelson (1952), Gale (1960), Takayama and Judge (1971),
Goreux and Manne (1973) and Adelman and Robinson (1978).

2van der Laan and Tallman (1985) refer to these as “generalized complementarity problems”.
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bounds, mixtures of constrained and unconstrained variables, sparse matrix algebra and dynamic
memory allocation. Both solvers employ the basis factorization package from MINOS 5.4, LUSOL
(Gill et al.(1991)).

MILES executes a generalized Newton algorithm with a backtracking line search. This method
is based on an algorithm investigated by Mathiesen (1985) who proposed a modeling format and
sequential method for solving economic equilibrium models. Mathiesen’s method is closely related
to algorithms proposed by Robinson (1972), Hogan (1975), Eaves (1978) and Josephy (1979). The
algorithm executed by PATH is a “global Newton” method in which the backtracking line search is
replaced by a “path search”. The algorithms share the same quadratic rate of convergence near a
solution, but they may follow different trajectories away from the equilibrium. Because convergence
cannot always be guaranteed with either algorithm, it is helpful to have both algorithms available
when working with large or difficult problems.

There are two methods for expressing mixed complementarity problems in GAMS. The first
is based on “standard” GAMS algebra with extended syntax to signify complementarity links
between equations and variables. The second method is a GAMS interface for general equilibrium
modeling with MPSGE (a Mathematical Programming System for General Equilibrium). MPSGE
is a function and Jacobian evaluation program for a broad class of economic models. Nonlinear
equations in an MPSGE model are automatically generated from a tabular description of cost and
expenditure functions. The MPSGE interface is well suited for a specific class of functions, whereas
GAMS/MCP can be applied to any complementarity problem which can be written with standard
GAMS algebra. Any MPSGE model can be written in GAMS/MCP but not all GAMS/MCP
models can be cast using MPSGE functions.3

The remainder of this paper is organized as follows. Section 2 defines the general class of math-
ematical programs which can be cast in an MCP format, Section 3 presents MCP formulations
for three models which arise in market equilibrium analysis and game theory and computational
benchmarks for MILES and PATH. Section 4 describes how local sensitivity analysis can be con-
ducted within GAMS by using a nonlinear optimizer in conjunction with GAMS/MCP. Section
5 summarizes of GAMS/MCP syntax, and section 6 provides a brief conclusion. An appendix
(available upon request) contains program listings for models described in the paper.

2 Manifestations of the Mixed Complementarity Problem

The “mixed-complementarity problem” (MCP) is defined here as:

Given: F : RN → RN , `, u ∈ RN (MCP)

Find: z, w, v ∈ RN

s.t. F (z)− w + v = 0

` ≤ z ≤ u, w ≥ 0, v ≥ 0

wT (z − `) = 0, vT (u− z) = 0

in which −∞ ≤ ` ≤ u ≤ +∞. F must be continuously differentiable in order to express a model
using GAMS/MCP algebra. Sufficient conditions for convergence of a Newton-type algorithm place
additional restrictions on F . Once such condition would be that F is a P -function (see Harker and
Pang (1990).)4

3The present paper does not present details of the MPSGE syntax. The interested reader is referred to Rutherford
(1992b). MPSGE accommodates “auxiliary constraints” written in GAMS/MCP algebra for economic features which
fall outside the standard Arrow-Debreu framework.

4In practice, it is quite difficult to determine whether the properties of a particular mapping guarantee conver-
gence. For applied work, it is normal practice to first confirm convergence for a small-scale prototype and then
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This MCP format encompasses a number of special cases, including the following:
(i) a linear system of equations:

Given: A ∈ Rn×n, b ∈ Rn (LSYS)

Find: x ∈ Rn

s.t. Ax = b

which is represented as an MCP by letting ` = −∞, u = +∞, z = x, and F (z) = Az − b;
(ii) a nonlinear system of equations:

Given: f : Rn → Rn, b ∈ Rn (NLSYS)

Find: x ∈ Rn

s.t. f(x) = 0

which is represented as an MCP by letting ` = −∞, u = +∞, z = x, and F (z) = f(z);
(iii) a linear complementarity problem:

Given: M ∈ Rn×n, q ∈ Rn (LCP)

Find: z ∈ Rn

s.t. q + Mz ≥ 0, z ≥ 0, zT (q + Mz) = 0

which is represented as an MCP by letting ` = 0, u = +∞, and F (z) = q + Mz;
(iv) a nonlinear complementarity problem:

Given: f : Rn → Rn (NCP)

Find: z ∈ Rn

s.t. f(z) ≥ 0, z ≥ 0, zT f(z) = 0

which is represented as an MCP by setting ` = 0, u = +∞, and F (z) = f(z);
(v) a nonlinear program:

Given: f : Rn → R, g : Rn → Rm, ˆ̀, û ∈ Rn (NLP)

Find: x ∈ Rn to

max f(x)

s.t. g(x) = 0

ˆ̀≤ x ≤ û

which (when f() is concave and g() is convex) may be represented as an MCP by setting N = n+m,
and partitioning5:

z =
(

x
y

)
, ` =

( ˆ̀
−∞

)
, u =

(
û

+∞
)

, F (z) =
{∇f(x)−∇g(x)T y

g(x)

proceed to develop a large scale model.
5y corresponds to the Lagrange multipliers on the constraints in the nonlinear program.
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;
(v) a finite-dimensional system of variational inequalities:

Given: f : Rn →n R, g : Rn → Rm (VIP)

Find: x∗ ∈ X ≡ {ξ ∈ Rn|g(ξ) ≥ 0}

max f(x∗)T (x− x∗) ≥ 0 ∀x ∈ X

which (when f() is convex and g() is concave) is represented as an MCP by setting N = n+m,
and partitioning6

z =
(

x
y

)
, ` =

(−∞
0

)
, u = (+∞) , F (z) =

{
f(x)−∇g(x)T y

g(x)

.
When a model can be directly expressed as a linear or nonlinear program, it is typically more

efficient and reliable to apply a linear or nonlinear programming algorithm, several of which are
available through GAMS. MCP is particularly useful for mathematical programs which cannot be
processed as optimization problems. Local sensitivity techniques for MCP models may be employed
for any of these mathematical programs.

3 Spatial Equilibrium Models

As an introduction to the MCP format, consider the Hitchcock-Koopmans transportation problem
as described by Dantzig (1963). The data include a set of suppliers I and a set of markets J ,
with supplies ai, demands bj , transport costs cij from supplier i to market j. Figure 1 presents
GAMS code defining the sets and data parameters used in the various models which are to be
subsequently presented. Cast as a planning problem, this linear program seeks a transport schedule
which minimizes the cost of supplying all markets. That is:

min
∑

ij cijxij

s.t.
∑

j xij ≤ ai

∑
i xij ≥ bj

x ≥ 0

The GAMS code for the linear programming formulation is in Figure 2.7

It is well known that this problem can be interpreted as a market equilibrium problem in
which the dual multiplier for an equation from the first set of constraints, wi, represents the price
in supply market i, and the dual multiplier for an equation in the second set of constraints, pj ,
represents the price in demand market j.

6Observe that x∗ in (VIP) solves:
min
x∈X

f(x∗)T x

Provided that the relevant convexity and regularity conditions are satisfied, the MCP system constitutes necessary
and sufficient conditions for minimization, and therefore an MCP solution is a solution to the original system of
variational inequalities.

7This and subsequent Figures contain GAMS program fragments which illustrate ideas. Full program listings
are provided in Appendix B. The MCP transportation model is in the GAMS model library. To copy it to your
current directory execute “gamslib transmcp”. Readers unfamiliar with the rudiments of the GAMS language may
refer to Chapter 2 of the GAMS Users Guide (1987).
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SETS
I canning plants / SEATTLE, SAN-DIEGO /
J markets / NEW-YORK, CHICAGO, TOPEKA / ;

PARAMETERS
A(I) capacity of plant i in cases (when prices are unity)
/ SEATTLE 325

SAN-DIEGO 575 /,
B(J) demand at market j in cases (when prices equal unity)
/ NEW-YORK 325

CHICAGO 300
TOPEKA 275 /,

ETA(I) Price elasticity of supply
/ SEATTLE 1.0

SAN-DIEGO 1.0 /,

SIGMA(J) Price elasticity of demand
/ NEW-YORK 1.5

CHICAGO 1.2
TOPEKA 2.0 /;

TABLE DIST(I,J) distance in thousands of miles
NEW-YORK CHICAGO TOPEKA

SEATTLE 2.5 1.7 1.8
SAN-DIEGO 2.5 1.8 1.4 ;

SCALAR F freight in dollars per case per thousand miles /90/ ;

PARAMETER C(I,J) transport cost in thousands of dollars per case ;

C(I,J) = F * DIST(I,J) / 1000 ;

PARAMETER PBAR(J) Reference price at demand node J (suppy price = 1)
/ NEW-YORK 1.225

CHICAGO 1.153
TOPEKA 1.126 /;

Figure 1: GAMS Set and Data Statements for the Transportation Model
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PARAMETER ALPHA(I) Supply function share coefficient (MCP),
BETA(J) Demand function share coefficient (MCP),
GAMMA(I) Supply function share coefficient (NLP),
KAPPA(J) Demand function share coefficient (NLP),
EPSD(J) Demand function elasticity coefficient,
EPSY(I) Supply function elasticity coefficient;

ALPHA(I) = A(I);
BETA(J) = B(J) * PBAR(J)**SIGMA(J);
GAMMA(I) = (ETA(I) / (1 + ETA(I))) * (1/ALPHA(I))**(1/ETA(I));
KAPPA(J) = (SIGMA(J) / (SIGMA(J)-1)) * BETA(J)**(1/SIGMA(J));
EPSD(J) = (SIGMA(J) - 1) / SIGMA(J);
EPSY(I) = (ETA(I) + 1) / ETA(I);

Figure 2: GAMS Parameter Declarations and Assignments for the Transportation Model

VARIABLES
X(I,J) SHIPMENT QUANTITY FROM I TO J
COST MINIMAND - TOTAL COST OF SHIPMENT

POSITIVE VARIABLE X;

EQUATIONS
SUPPLY(I) SUPPLY LIMIT
DEMAND(J) DEMAND CONSTRAINT (FIXED)
OBJDEF DEFINES COST;

SUPPLY(I).. A(I) =G= SUM(J, X(I,J));

DEMAND(J).. SUM(I, X(I,J)) =G= B(J);

OBJDEF.. COST =E= SUM((I,J), C(I,J) * X(I,J));

MODEL MINCOST / SUPPLY, DEMAND, OBJDEF/;

SOLVE MINCOST USING LP MINIMIZING COST;

Figure 3: The Transportation Model Formulated as a Linear Program
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POSITIVE VARIABLES
W(I) SHADOW PRICE AT SUPPLY NODE I,
P(J) SHADOW PRICE AT DEMAND NODE J,
X(I,J) SHIPMENT QUANTITIES IN CASES;

EQUATIONS
SUPPLY(I) SUPPLY LIMIT AT PLANT I,
DEMAND(J) FIXED DEMAND AT MARKET J,
PROFIT(I,J) ZERO PROFIT CONDITIONS;

PROFIT(I,J).. W(I) + C(I,J) =G= P(J);

SUPPLY(I).. A(I) =G= SUM(J, X(I,J));

DEMAND(J).. SUM(I, X(I,J)) =G= B(J);

MODEL TRNSP / PROFIT.X, SUPPLY.W, DEMAND.P/ ;

SOLVE TRNSP USING MCP;

Figure 4: The Transportation LP Formulated as an LCP

Cast as a market equilibrium problem, a system of IJ inequalities and associated complemen-
tary slackness conditions replace the minimization operator. “Zero profit conditions” for trans-
portation activities characterize a competitive, constant-returns-to-scale (CRTS) “transportation”
industry in which free entry drives excess profits to zero for active trade links and no unprofitable
activities are operated. The equations which characterize this equilibrium are:

∑
j xij ≤ ai, wi ≥ 0, wi

(
ai −

∑
j xij

)
= 0 ∀i

∑
i xij ≥ bj , pj ≥ 0, pj (bj −

∑
i xij) = 0 ∀i

wi + cij ≥ pij , xij ≥ 0, xij (wi + cij − pj) = 0 ∀i, j
This system of inequalities is a linear complementarity problem which may be specified in

GAMS/MCP syntax as shown in Figure 3.
There would be no particular reason to formulate a linear program as an MCP. Suppose,

however, that demands and supplies were price responsive and all markets perfectly competitive.
These assumptions alone would not rule out an optimization approach, but they would require
use of a nonlinear programming algorithm. For concreteness, let demand and supply functions be
isoelastic. The revised equilibrium conditions are:

∑
j xij ≤ αiw

ηi

i , wi ≥ 0, wi

(
αiw

ηi

i −∑
j xij

)
= 0 ∀i

∑
i xij ≥ βjp

−σj

j , pj ≥ 0, pj

(
βjp

−σj

j −∑
i xij

)
= 0 ∀i

wi + cij ≥ pij , xij ≥ 0, xij (wi + cij − pj) = 0 ∀i, j
This is a nonlinear complementarity problem.
When the matrix of cross-price elasticities for a partial equilibrium model is symmetric, there

is an associated optimization problem which can be used to compute the equilibrium prices and
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quantities. (The model is said to be integrable - see Takayama and Judge (1971).) In the present
example, cross-price elasticities are zero, and the associated optimization problem is:

max
∑

i γiy
εy

i
i +

∑
j κjd

εd
j

j −∑
ij cijxij

s.t.
∑

j xij ≤ yi

∑
i xij ≥ dj

xij ≥ 0, dj ≥ 0, yi ≥ 0

where:

γi =
ηi

1 + ηi

(
1
αi

)1/ηi

, κj =
σj

1 + σj
β

1/σj

j , εy
i =

1 + ηi

ηi
, and εd

j =
σj − 1

σj

In economic terms, the market allocation “maximizes the sum of producer and consumer sur-
plus”.

Economic equilibrium models are typically used to assess the consequences of market distor-
tions, typically in the form of taxes, tariffs or other types of government policies. In public
finance, equilibrium models are often used to measure the “excess burden” of a given tax struc-
ture. When ad-valorem taxes are present, the NLP formulation of a market equilibrium problem
is not straight-forward. No single optimization problem characterizes the equilibrium because the
resulting allocation is inefficient. Such an equilibrium could be computed by solving a sequence of
nonlinear programs, but in these cases the MCP formulation is certainly more transparent.

As illustration of a model which is difficult to treat in an optimization framework but easy
to pose as an MCP, consider applying ad-valorem taxes on trade flows in the spatial equilibrium
model from above. This causes the supply price to be a non-unitary multiple of the marginal cost
of supply, destroying integrability (notice that specific taxes do not cause this problem, as they can
simply be added to the transport cost coefficients). The GAMS/MCP model is shown in Figure 4.

There are several directions in which the spatial price equilibrium model can be extended.
Harker (1986) describes several spatial equilibrium models with imperfect competition. The vari-
ational and complementarity versions of these models are implemented in GAMS library models
HARKER and HARKERMCP, respectively.

3.1 An MCP Formulation for N-Player Non-cooperative Games

The Lemke-Howson (1964) algorithm finds equilibria for two-player non-cooperative games with
finite action spaces in pure or mixed strategies. An N-player extension of bimatrix games is
conveniently expressed with the following notation:

• j denotes players j ∈ {1 . . . N}
• i denotes pure strategies i ∈ {1 . . . M} (the same number of strategies are assumed available

to all players to simplify notation)

• s denotes a “pure strategy profile” in which one pure strategy is assigned to each player,
s ∈ {1 . . . MN}

• i(s, j) denotes the pure strategy assigned to player j in strategy profile s.

• ajs denotes the payoff to player j which arises from strategy profile s.
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PARAMETER T(I,J) AD-VALOREM TAX RATE;

POSITIVE VARIABLES
W(I) SHADOW PRICE AT SUPPLY NODE I,
P(J) SHADOW PRICE AT DEMAND NODE J,
X(I,J) SHIPMENT QUANTITIES IN CASES;

EQUATIONS
SUPPLY(I) SUPPLY LIMIT
DEMAND(J) DEMAND CONSTRAINT (FIXED)
PROFIT(I,J) ZERO PROFIT CONDITIONS;

SUPPLY(I).. ALPHA(I) * W(I)**ETA(I) =G= SUM(J, X(I,J));

DEMAND(J).. SUM(I, X(I,J)) =G= BETA(J) * P(J)**(-SIGMA(J));

PROFIT(I,J).. (1 + T(I,J)) * (W(I) + C(I,J)) =G= P(J);

MODEL TRNSP / PROFIT.X, SUPPLY.W, DEMAND.P/ ;

* Avoid function evaluation errors by installing positive bounds:

P.LO(J) = 0.001; W.LO(I) = 0.001;

* 10% tax on all trade:

T(I,J) = 0.10;

SOLVE TRNSP USING MCP;

Figure 5: Spatial Price Equilibrium with Ad-Valorem Taxes
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Each player j chooses a vector of probabilities, pij , representing the probability of playing pure
strategy i in the equilibrium. By definition:

pij ≥ 0 ∀i, j, and
∑

i

pij = 1 ∀j

.
Letqjs denote the probability that player j is confronted by pure strategy profile s in the

equilibrium. Formally:
qjs = Πj′ 6=jpi(j′,s),j′

We assume that player j chooses a strategy profile to maximize the expected payoff, taking
actions of the other players as given:

maxpij πj =
∑

i pij

(∑
s|i(s,j)=i ajsqjs

)

s.t.
∑

i pij = 1, pij ≥ 0

A workable MCP formulation for the equilibrium problem needs to incorporate individual
simplex constraints in a way which does not render the mapping singular at the equilibrium. In
the formulation presented here, an additional variable yj is associated with the simplex constraint
for player j. It is easy to show that in any solution to this MCP, yj must have a value of unity.
The MCP formulation is:

πj =
∑

s ajs

[
Πj′

(
pi(s,j′),j′

yj′

)]
∀j

πj ≥
∑

s|i(s,j)=i ajs

(
Πj′ 6=j

pi(s,j′),j′
yj′

)
, pij ≥ 0,

pij

{
πj −

∑
s|i(s,j)=i ajs

(
Πj′ 6=j

pi(s,j′),j′
yj′

)}
= 0, ∀i, j

∑
i pij ≥ 1, yj ≥ 0, yj (1−∑

i pij) = 1 ∀j
The GAMS implementation of this model is displayed in Figures 7 and 8. Figure 7 sets up the

data structures using dynamic sets to produce the mapping i(s,j).
This is the ”trickiest” part of the programming because it relies on the use of dynamic ordered

sets. Once the data structure LINK(S,I,J) has been installed, it is straightforward to formulate
the equilibrium conditions shown in Figure 8.

4 Local Sensitivity Analysis

Suppose that GAMS/MCP has been used to solve a nonlinear system of the form:

F (z; t) = 0

where z is an N -vector of decision variables, t is an M -vector of parameters, and F is a function
mapping RN+M to RN .

Given a solution z∗, it is often helpful to know the local dependence of z∗ on t.
Let Jz denote the Jacobian of F with respect to z (i.e. ∇zF ), and let Jt denote the Jacobian

of F with respect to t (i.e. ∇tF ). It is easy to show that:

dz = −J−1
z Jtdt ≡ Sdt

where J−1
z is the inverse of Jz. This equation defines the “local sensitivity matrix”, S = −J−1

z Jt.
If the system of equations is specified so that Jz has full rank at the solution, then the gradients fall
out as the solution of a linear system of equations. Setting up the linear system with the Jacobian
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SET J PLAYERS /J1*J3/,
I ACTIONS /I1*I2/,
SS STRATEGY PROFILES /S1*S1000/,
S(SS) ACTIVE STRATEGY PROFILES,
LINK(SS,I,J) CONNECTION BETWEEN ACTIONS AND PROFILES;

ABORT$(CARD(SS) LT CARD(I1)**3) " SET SS IS NOT LARGE ENOUGH.";

PARAMETER
PAYOFF(SS,J) PAYOFF DATA IN STRATEGY-PROFILE FORMAT;

* READ THE DATA:

TABLE LOSS(J,I,I,I) PAYOFF DATA IN DENSE FORM

I1.I1 I1.I2 I2.I1 I2.I2
J1.I1 1 2 8 5
J1.I2 8 8 2 2
J2.I1 4 2 2 1
J2.I2 2 6 1 1
J3.I1 4 1 4 2
J3.I2 8 8 2 1;

* LET I1, I2 AND I3 ALL STAND FOR SET I:

ALIAS (I,I1),(I,I2),(I,I3);

* ASSIGN PLAYER ACTIONS TO STRATEGY PROFILES USING
* DYNAMIC SET S().

* INITIALIZE SET S WITH A SINGLE ENTRY, THE FIRST ELEMENT OF SS:

S("S1") = YES;

* ONE ELEMENT OF SET S IS GENERATED FOR EACH COMBINATION OF PURE STRATEGIES:

LOOP((I1,I2,I3),

* SET S CONTAINS A SINGLE ELEMENT FOR THE FOLLOWING STATEMENT:

LINK(S,I1,"J1") = YES;
LINK(S,I2,"J2") = YES;
LINK(S,I3,"J3") = YES;
PAYOFF(S,J) = -LOSS(J,I1,I2,I3);

* THE NEXT STATEMENTS MOVE S THE SUBSEQUENT ELEMENT OF SS:

S(SS)$S(SS-1) = YES;
S(SS)$S(SS+1) = NO;

);

* THE NEXT STATEMENTS DEFINE THE SET OF ACTION PROFILES AS
* THOSE ELEMENTS OF SS FOR WHICH PAYOFFS HAVE BEEN ASSIGNED:

S(SS) = NO; S(SS) = YES$SUM(J, ABS(PAYOFF(SS,J)));

Figure 6: N-Player Games - GAMS Code to Generate a Model with N=3, M=2
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POSITIVE
VARIABLE P(I,J) PROBABILITY OF STRATEGY I BY PLAYER J,

Y(J) SIMPLEX VARIABLE (=1 IN EQUILIBRIUM)
PI(J) EXPECTED RETURN TO PLAYER J;

EQUATION PIDEF(J) EXPECTED PAYOFF DEFINITION,
SIMPLEX(J) SIMPLEX CONSTRAINT
EQUIL(I,J) EXCESS RETURN FROM PURE STRATEGY;

* EXPECTED PAYOFF:

PIDEF(J)..

PI(J) =E= SUM(S, PAYOFF(S,J) * PROD(JJ, SUM(I$LINK(S,I,JJ), P(I,JJ)/Y(JJ))));

* STRATEGY I BY PLAYER J YIELDS NO MORE THAN EXPECTED RETURN:

EQUIL(I,J)..

PI(J) =G= SUM(S$LINK(S,I,J), PAYOFF(S,J) *

PROD(JJ$(ORD(JJ) NE ORD(J)), SUM(II$LINK(S,II,JJ), P(II,JJ)/Y(JJ))));

* PROBABILITIES SUM TO 1:

SIMPLEX(J).. SUM(I, P(I,J)) =G= 1;

Figure 7: GAMS/MCP Code for the General N-Player M-Strategy Nash Game
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matrices is easy in theory but tedious in practice. Fortunately, there is an easier approach by which
GAMS generates the derivatives automatically.

Consider the following nonlinear program:

maxz,t zi

s.t. F (z; t) = 0

t = t̄

The implicit function theorem (see Varian (1992)) implies that the ith row of S corresponds
to the dual multipliers associated with the bounds on t. To compute the entire sensitivity matrix
therefore requires the solution of N separate sets of nonlinear programs, all of which may be
initiated at the equilibrium point.

A minor variation on this technique applies to complementarity problems involving mixtures of
equations and inequalities. In the MCP case, the nonlinear system passed to the nonlinear program
only include those equations which are binding at the solution (i.e., any equations which are slack
in the MCP solution must be omitted from the NLP using GAMS exception (“$”) operators). An
illustration of this technique is provided in the Appendix.

5 GAMS/MCP Syntax

In a GAMS/MCP program, the central unknowns, z, are declared as VARIABLES, the vectors u
and are specified as upper and lower bounds. The function F () is written using GAMS matrix alge-
bra in equation statements. All aspects of the GAMS/MCP language are identical to GAMS/NLP
except that in an MCP problem no objective function is specified, and bounded variables must be
mapped to complementary inequalities.

In the canonical MCP structure, the equations wT (z − `) = 0 and vT (u − z) = 0 imply
a particular association of variables with equations. Quite naturally, zi is complementary with
Fi(z). In an empirical model, there are typically several classes of variables and equations, and
the declaration sequence is arbitrary, so the rule ziFi = 0 is impossible to interpret.8

To fix the complementarity structure, a GAMS/MCP program explicitly associates variables
with equations in the MODEL statement. Unlike an NLP in which only equation names appear
on the model statement, in an MCP program both equation and variable names may be listed.
The syntax is:

MODEL NAME /EQU1.VAR1, EQU2.VAR2, .../;

In this list, EQU i and VAR i must be defined over the same domains.
Complementarity associations are only required for variables which are subject to upper or

lower bounds. Otherwise, GAMS/MCP only requires that the number of unrestricted variables
equal the number of unassociated equations in the model. It is a simple matter to “mix” equations
with inequalities in this format. The specification of linear and nonlinear systems of equations
with no bounds and complementarity conditions requires no variable names on the MODEL list.

Joint consistency of inequalities and complements assignments is important when finite bounds
are imposed on z. In the MCP structure, slack variables w and v are implicitly represented

8One way to make this association would have been to use the same name for both equations and variables.
This syntax was rejected because it would not be “upward compatible” with NLP models. The present structure
permits “sharing” a system of equations in both complementarity and optimization models within the same pro-
gram. Furthermore, the present structure makes it quite simple to convert existing GAMS/NLP models into the
complementarity structure.
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Associated Equation Type

Variable =G= =L= =E=

Lower OK Error OK/warning
Upper Error OK OK/warning
Both OK/warning OK/warning OK/warning
Free OK/message OK/message OK
Fixed OK OK OK

Key:

* ‘‘Error’’ means that the correspondence is inconsistent and the
problem will not be processed.

* ‘‘OK/warning’’ means that the association is acceptable but the
constraint as written may not be satisfied in the solution. We
accept the syntax and issue a warning on the list file if the
constraint is not satisfied at the equilibrium. This warning is
generated if the constraint is violated either by non-zero upper and
lower bound slack variables or through the effects of the multipliers
from the variational inequality side constraints.

* ‘‘OK/message’’ means that an inequality constraint has been
associated with an unrestricted variables. The variable will always
be in the basis, so the constraint will never be slack and it is
therefore treated as an equality. A message to this effect will be
generated on the listing file.

Figure 8: Rules for Associating Complementary Variables and Equations

in a GAMS/MCP model through the equation statement. The fact that the lower bound slack
variable (w) appears with a coefficient of −1 and the upper bound slack variable (v) appears with
a coefficient of +1 means that the “orientation” of the inequality is significant. In GAMS/MCP,
the equations “F (z) ≥ 0” and “−F (z) ≤ 0” are not equivalent. In the first case, the inequality is
assumed to be complementary with the lower bound slack of the associated variable while in the
second case the inequality is taken to be complementary with the upper bound slack.

Compiler error conditions can result from improperly specified bounds and associated equation
types. If an equation is written using =G= then the associated lower bound must be finite. Likewise,
if a constraint is written as =L= the associated upper bound must be finite. Table A.1 outlines the
rules which apply when variables are associated with different types of equations.
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Mixed Complementarity Programming with GAMS

T.F. Rutherford (JECD 1998)

Update section 3:   Transport problem with isoelastic supply and demand functions

Instead of :
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it should be:
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Also: In the objective function, the signs on the integrals of demand and supply functions
should be opposite.


