Voltar ao Topo

    Courses Outline

 Geographical Economics >>
 Overlapping Generation Models >>
 Input-Output Modeling >>
 Frontier Models >>

                 

Geographical Economics

16-19 July
4 classes= 12 hours
All classes start at 9H00.

ROOM 211 - Francesinhas I Building

Course leader: Charles van Marrewijk
                       Erasmus University, Rotterdam

Purpose: The aim of course is to introduce the students to the new geographical economics, based in the book: An Introduction to Geographical Economics by Steve Brakman; Harry Garretsen and Charles van Marrewijk. Cambridge University Press, 2001.

Background: A basic understanding of microeconomics, econometrics will be assumed as a prerequisite.

More information: summerlisbon@iseg.utl.pt

An Introduction to Geographical Economics 

by Steve Brakman; Harry Garretsen and Charles van Marrewijk. 

Cambridge University Press, 2001

 

[ Sessions : a selection of the topics of the book;index bellow]

 1       A first look at geography, trade, and development                   1

1.1 Introduction                 1

l.2 Clusters in the world economy                2

l.3 Economy interaction                9

l.4 Rapid change in the distribution of population and production                 15

l.5 Overview of the book                 l 6

      Appendix              l 8

      Exercises              2 l

 

2                   Geography and economic theory                   22

2.l  Introduction                   22

2.2 Geography in regional and urban economics                   23

2.3 Trade theory                   37

2.4 Economic growth and development                   50

2.5 Conclusions                   56

Exercises             57

 

   The core model of geographical economics                   59

3.1          Introduction         59

3.2    An example of geographical economics         60

3.3    The structure of the model         63

3.4          Demand     66

3.5                       Supply                   76

3.6                       Transport costs: icebergs in geography   80

3.7                       Multiple locations                      83

3.8                       Equilibrium            85

3.9    A few remarks on dynamics     93

3. l0 The simple example and the core model           94

Exercises                97

 

   Solutions and speculations                   100

4. l          Introduction         100

4.2          Short-run equilibrium      100

4.3    Some first results         103

4.4          Structural change I: transport costs         105

4.5          Structural change II: other parameters         106

4.6         Normalization analysis         108

4 .7          Sustain and break analysis         110

4.8          Welfare    115

4.9          Stability and welfare in the limit         118

4.l0   The racetrack economy: many locations in neutral space         119

4.ll    Conclusions   123

.Appendix          124

Exercises          126

 

 

   Geographical economics and empirical evidence   128

5.l         Introduction         128

5.2    The spatial distribution of economic activity         129

5.3    The facts and economic theory         138

5.4    The relevance of geographical economics I: the home-market effect         141

5.5    The relevance of  geographical economics II : a spatial wage structure         145

5.6    A case study: the spatial wage structure of Germany   154

5.7    Conclusions   164

Exercises          165

               

 

   Refinements and extensions   167

6.1    Introduction 167

6.2    Type I extensions: non-neutral space and transport costs   168

6.3    Type II extensions: production structure and geography   177

6.4    Type III extensions:  the burden of  history and the  role of expectations   182

6.5    Conclusions   185

         Exercises   186

 

 

7    Cities and congestion: the economics of Zipf’s Law   187

7.1    Introduction     187

7.2    Congestion as an  additional spreading force    190

7.3       Zipf’ s Law: definition , data, and estimation results          198

7.4       Explanations for Zipf’ s Law: the congestion anodal and other approaches          208

7.5       Conclusions           219

Appendix          220

Exercises          221

 

 

8   Agglomeration and international business     222

8.1          Introduction          222

8.2       Multinational production: stylized facts          223

8.3       Explaining multinational production           224

8.4       Multinationals in geographical economics          230

8.5       Empirical evidence            237

8.6       Conclusions            243

Exercises          244

 

9       The structure of international trade                   245

9.1       Introduction          245

9.2       Two manufacturing sectors            248

9.3       Comparative advantage: Ricardo          249

9.4       Comparative advantage: factor abundance         

9.5       Migration         

9.6       Gravity         

9.7       Conclusions        

Appendix        

                      Exercises           

 

10        Dynamics and economic growth   

10.1    Introduction          

10.2    Adjustment dynamics          

10.3     Some stylized facts of economic growth        

10.4    Explaining the facts endogenous growth and simulation dynamics I        

10.5    Simulation dynamics II: an experiment          

10.6    Economic growth          

10.7 Conclusions                            

Appendix          

Exercises                          

 

11      The policy implications and value-added of geographical economics               

11.1 Introduction                             

11.2 Building a bridge: a simple policy experiment  in non-neutral space                   

11.3 Policy relevance of geographical economics                   

11.4 Al1 assessment of geographical economics                   

11.5 Geographical ecol-loll-tics in 2020                   

Appendix 1          

Appendix 2          

 

 

 

List of figures                                    

List of  tables                                            

List of technical notes                                                       

List of special interest boxes                                          

List of symbols                                         

List of parameters                                               

Preface                                                       

Suggested course outline                                                       

 

 

Overlapping Generation Models with Production and Capital Accumulation: Theory and Simulation

16-18 July
3 classes=12 hours
All classes start at 14H00

ROOM 211 - Francesinhas I Building

Course leader: Karl Farmer
                       University of Graz, Graz-Austria

 

 

Purpose: The aim of the course is to teach  overlapping generation models(OLG) starting with the basic one-sector OLG model with production and capital accumulation; continuing with natural resources in the basic one-sector OLG model ; with two sector OLG model with homogenous and heterogenous capital and finishing with taxa policy in computable two sector OLG model with and without capital aggregation.

Background: A basic understanding of microeconomics and general equilibrium is required.

Course Outline:

Section 1

The basic one-sector OLG model with production and capital accumulation

Section 2

Natural resources in the basic one-sector OLG model

 Section 3

Two-sector OLG models with homogeneous and heterogeneous capital

 Section 4

Tax policy in computable two-sector OLG models with and without capital aggregation

Literature

Basic literature

C. Azariadis (1993) , Intertemporal Macroeconomics, Basil Blackwell: Oxford 1993, chap. 1, 4, 6, 7, 13.1, 15.5, 20

D. de la Croix (2003), A Theory of Economic Growth: Dynamics and Policy in Overlapping Generations, Cambridge: C. U. P, to appear

K. Farmer, R. Wendner (1999), Wachstum und Außenhandel (Eine Einführung in die Gleichgewichtstheorie der Wachstums- und Außenhandelsdynamik), 2. Aufl., Physica: Heidelberg, Kap. 3, 4, 5.

Specific Literature

Section 1

P. Diamond (1965), National debt in a neoclassical growth model, A.E.R. 55, 1135 - 1150

K. Farmer (2003), Public debt dynamics in a parametric OLG model, Research Memorandum, Department of Economics, Graz University, to appear

K. Farmer, R. Wendner (1999), Wachstum und Außenhandel, Kap.3, 4 and 5

Galor, O, H. Ryder (1989), Existence, uniqueness, and stability in an overlapping-generations model with productive capital, Journal of Economic Theory 49, 360 – 375

Section 2

K. Farmer (2000), Intergenerational natural-capital equality in an overlapping-generations model with logistic regeneration, Journal of Economics 72 (2), 520 – 542

E. Koskela, M. Ollikainen, M. Puhakka (2002), Renewable resources in an overlapping generations economy without capital, Journal of Environmental Economics and Management 43, 497 – 517

A. Mourmouras (1991), Competitive equilibria and sustainable growth in a life-cycle growth model with natural resources, Scandinavian Journal of Economics 93 (4), 585 – 591

Section 3

K. Farmer (1997), Heterogeneous capital in a two-sector OLG model, Metroeconomica 48, 36 – 54.

K. Farmer, R. Wendner (2003), A two-sector model with heterogeneous capital, Economic Theory, to appear

O. Galor (1992), A two-sector overlapping generations model: A global characterization, Econometrica 60, 1351 – 1386

Section 4

K. Farmer, K. Steininger (1999), Reducing CO2-emissions under fiscal retrenchment: A multi-cohort CGE model for Austria, Resource &Environmental Economics 13, 309 - 340

K. Farmer, R. Wendner (2003), Dynamic multi-sector CGE modeling and the specification of capital, under review with Structural Change and Economic Dynamics

 

More information: summerlisbon@iseg.utl.pt

New developments in Input-Output modeling: A Short Course

22-24 July
3 classes=12 hours.
All classes start at 10H00

Course Leader: Geoffrey J.D. Hewings
                        University of Illinois, USA

Purpose: To teach new developments in input-output modeling, namely structural decomposition and input-output analysis in enlarged frameworks: Miyazawa systems with households endenous; Social accounting matrix; Computable general equilibrium models; econometric-input-output models and linear programming input-output models.

Background: A basic understanding of microeconomics and classical input-output modeling is assumed.

More information: summerlisbon@iseg.utl.pt

Course Outline:  

 

Session 1

Basics – from two sector to multi-sector modeling, a review

The input-output framework

Issues in estimation, multipliers, applications

 [exercise – construction of regional input-output table from national data]

 

Session 2

Key sector analysis

            Hirschman-Rasmussen

            Pure Linkage

            Economic landscapes

Analytical importance

            Sherman-Robinson, Bullard and Sebald

            Fields of influence of change

[exercise:  – calculation of key sectors, field of influence and economic landscapes]

 

Session 3

Structural decomposition – using in input-output analysis to interpret structure and structural change

            Simple decompositions

            Push-Pull analysis

            Feedback loops

            Cluster analysis

 [exercise: - decomposition of structural change in a series of matrices]

 

Session 4

Input-output analysis in Enlarged Frameworks

            Miyazawa systems with households endogenous

            Social Accounting Matrices

            Computable General Equilibrium models

            Econometric-Input-output models

            Linear Programming-Input-Output models

  

References [numbers indicate section of relevance]

 

[2] Bullard, C.W., and A.V. Sebald (1977) "Effects of parametric uncertainty and technological change in input-output models." Review of Economics and Statistics 59, 75-81.

[2] Bullard, C.W., and A.V. Sebald (1988). "Monte Carlo sensitivity analysis of input-output models." Review of Economics and Statistics 70, 705-12.

[2] Cella, G. (1984). "The Input-Output Measurement of Interindustry Linkages," Oxford Bulletin of Economics and Statistics. 46:73-84.

[2] Chenery, H.B. and T. Watanabe (1958) "International comparisons of the structure of production," Econometrica 26, 487-521

[2] Clements, B.J. and J.W. Rossi (1991). "Interindustry Linkages and Economic Development: The Case of Brazil Reconsidered," The Developing Economies, 29:166-187.

[2] Clements, B.J. and J.W. Rossi (1992). "Ligações Interindustriais e Setores-Chave na Economia Brasileira," Pesquisa e Planejamento Econômico. 22:101-124.

[4] Cole, Sam. 1999. “In the Spirit of Miyazawa: Multipliers and the Metropolis,” in Geoffrey J.D. Hewings, Michael Sonis, Moss Madden, and Yoshio Kimura (eds.) Understanding and Interpreting Economic Structure. New York: Springer-Verlag, pp. 263-286

[4] Defourny, J. and E. Thorbecke. 1984. "Structural path analysis and multiplier decomposition within a social accounting framework," Economic Journal, 94:111-136

[3] Dewhurst, J.H.Ll. (1993) “Decomposition of changes in input-output tables,” Economic Systems Research 5:41-53

[3] Domingues, Eduardo A. Haddad, Geoffrey J.D. Hewings and Fernando Perobelli, “Structural changes in the Brazilian interregional economic system, 1985-1997: holistic matrix interpretation.” Australian Journal of Regional Studies (forthcoming, 2002)

[3] Dridi and Geoffrey J.D. Hewings, “An Investigation of Industry Associations, Association Loops, and Economic Complexity: Application to Canada and the United States, Economic Systems Research 14, 275-296 (2002)

[3] Feldman, S.J., D. McClain, and K. Palmer, (1987) "Sources of structural change in the United States 1963-1978: an input-output perspective," Review of Economics and Statistics 69:503-510

[3] Fossell, O. (1989) "The input-output framework for analyzing the transmission of industrial progress between industries," Economic Systems Research 1, 429-445

[4] Fritz, Michael Sonis and Geoffrey J.D. Hewings, “A Miyazawa Analysis of Industrial Emission Interdependencies between Polluting and Non-Polluting Sectors,” Structural Change and Economic Dynamics 9, 289-305 (1998)

[2] Fritz, Michael Sonis and Geoffrey J.D. Hewings. “Direct and Indirect Industrial Pollution Generation: A Field of Influence Approach.” In Geoffrey J.D. Hewings, Michael Sonis and David E. Boyce (eds.) Trade, Networks and Hierarchies, Advances in Spatial Sciences, Springer-Verlag, Heidelberg, Germany (2002)

[2] Guilhoto, Joaquim J.M., Geoffrey J.D. Hewings and Michael Sonis, “Productive Relations in the Northeast and the Rest of Brazil Regions in 1995: Decomposition & Synergy in Input-Output Systems,” Geographical Analysis 34, 62-75 (2002)

[3] Guilhoto, Joaquim J.M., Geoffrey J.D. Hewings, Michael Sonis and Jiemin Guo, “Research Note: Economic structural change over time: Brazil and the United States compared.” Journal of Policy Modeling, 23, 703-711 (2001)

[2] Guilhoto, Joaquim J.M., Michael Sonis, Geoffrey J.D. Hewings and Eduardo B. Martins, “Índices de ligações e sectores chave na economia Brasileira: 1959-1980,”  Pesquisa Planejamento Econômico 24:287-314 ( 1994)

[3] Guo, Jiemin, Michael Sonis and Geoffrey J.D. Hewings “Internal and external linkages of manufacturing and non-manufacturing industries:  applications to Chinese metropolitan economies,” in Geoffrey J.D. Hewings, Michael Sonis, Moss Madden and Yoshio Kimura (eds), Understanding and Interpreting Economic Structure, Advances in Spatial Sciences, Springer-Verlag, Heidelberg, Germany (1999)

[4] Haddad, Eduardo A. and Geoffrey J.D. Hewings, “The short-run regional effects of new investments and technological upgrade in the Brazilian automobile industry: an interregional computable general equilibrium analysis,” Oxford Development Studies, 27, 359-383 (1999)

[4] Haddad, Eduardo A. and Geoffrey J.D. Hewings. “Trade and Regional Development:  International and Interregional Competitiveness in Brazil.” In B. Johansson, Ch. Karlsson and R.R. Stough (eds.). Theories of Endogenous Regional Growth. (Heidelberg, Springer-Verlag, 2001). 181-208.

[4] Haddad, Eduardo A. and Geoffrey J.D. Hewings. “Transportation Costs and Regional Development: An Interregional CGE Analysis.” In P. Friedrich and S. Jutila, eds. Policies of Regional Competition. (Baden-Baden, Nomos Verlag, 2001).83-101

[3] Haddad, Eduardo A. Geoffrey J.D. Hewings and Michael Sonis  “Trade and interdependence in the economic growth process: a multiplier analysis for Latin America” Economia Aplicada, 3, 205-237 (1999)

[2] Hewings, Geoffrey J.D. and M.C. Romanos, (1981) "Simulating less developed regional economies under conditions of limited information," Geographical Analysis 13:373-390

[2] Hewings, Geoffrey J.D., Manuel A.R. da Fonseca, Joaquim J.M. Guilhoto, and Michael Sonis. 1989. "Key Sectors and Structural Change in the Brazilian Economy: a Comparison of Alternative Approaches and their Policy Implications," Journal of Policy Modeling, 11, 67-90.

[4] Hewings, Geoffrey J.D., Michael Sonis, Jiemin Guo, Philip R. Israilevich, and Graham R. Schindler. 1998. “The Hollowing-Out Process in the Chicago Economy, 1975-2011,” Geographical Analysis, 30, 217-233.

[1] Hewings, Geoffrey J.D., Michael Sonis, Moss Madden, and Yoshio Kimura, eds. 1999. Understanding and Interpreting Economic Structure. New York: Springer-Verlag.

[3] Hewings, Geoffrey J.D., Philip R. Israilevich, Graham R. Schindler and Michael Sonis, “Agglomeration, Clustering and Structural Change: Interpreting Changes in the Chicago Regional Economy,” in M. Steiner and R. Cappellin (eds.) From Agglomeration Economies to Innovative Clusters. (Pion, 1998)

[3] Hewings, Geoffrey J.D., Philip R. Israilevich, Michael Sonis and Graham R. Schindler, “Structural change in a metropolitan economy: the Chicago region, 1975-2010,” in S. Bertuglia, S. Lombardo and P. Nijkamp (eds) Spatial Effects of Innovative Behaviour (Springer-Verlag,  1997)

[3] Hewings, Geoffrey J.D., Yasuhide Okuyama and Michael Sonis, “Creating and Expanding Trade Partnerships within the Chicago Metropolitan Area: Applications using a Miyazawa Accounting System.” In G. Clarke and M. Madden (eds.) Regional Science in Business Springer-Verlag, (2001)

[3] Hewings, Geoffrey J.D., Yasuhide Okuyama, and Michael Sonis, “Economic Interdependence within the Chicago Metropolitan Region: A Miyazawa Analysis,” Journal of Regional Science, 41, 195-217 (2001)

[3] Hitomi, Kazumi, Yasuhide Okuyama, Geoffrey J.D. Hewings, and Michael Sonis “The Role of Interregional Trade in Generating Change in the Interregional Leontief Inverse in Japan, 1980-1990,” Economic Systems Research, 12, 515-537 (2000)

[3] Hulu, Edison and Geoffrey J.D. Hewings. 1993. "The development and use of interregional input-output models for Indonesia under conditions of limited information," Review of Regional Development Studies, 5: 135-153

[4] Khan, Haider A. and Eric Thorbecke. 1988. Macroeconomic Effects and Diffusion of Alternative Technologies within a Social Accounting Matrix Framework, Aldershot, Gower.

[3] Israilevich, Philip R., Geoffrey J.D. Hewings and Graham R. Schindler, “Three-dimensional analysis of change,” Regional Studies, 31: 131-138 (1997)

[4] Israilevich, Philip R., Geoffrey J.D. Hewings, G.R. Schindler and R. Mahidhara, "The choice of input-output table embedded in regional econometric input-output models," Papers in Regional Science,  75: 103-119 (1996)

[4] Israilevich, Philip R., Geoffrey J.D. Hewings, Michael Sonis and Graham R. Schindler, “Forecasting Structural Change with a Regional Econometric Input-Output Model,” Journal of Regional Science 37: 565-90 (1997)

[3] Miyazawa, Ken’ichi. (1966) "Internal and external matrix multipliers in the input-output model." Hitotsubashi Journal of Economics 7, 38-55

[1] Miyazawa, Ken'ichi. 1976. Input-output Analysis and the Structure of Income Distribution. New York, NY: Springer-Verlag.

[4] Okuyama, Yasuhide, Geoffrey J.D. Hewings and Michael Sonis, “Economic Impacts of an Unscheduled, Disruptive Event: A Miyazawa Multiplier Analysis,” in Geoffrey J.D. Hewings, Michael Sonis, Moss Madden and Yoshio Kimura (eds), Understanding and Interpreting Economic Structure, Advances in Spatial Sciences, Springer-Verlag, Heidelberg, Germany (1999)

[4] Okuyama, Yasuhide, Geoffrey J.D. Hewings, Michael Sonis and Philip R. Israilevich, “An Econometric Analysis of Bi-Proportional Properties in an Econometric-Input-Output Modeling System,” Journal of Regional Science 42, 361-388 (2002)

[2] Okuyama, Yasuhide, Geoffrey J.D. Hewings, Michael Sonis, and Philip Israilevich “Structural Changes in the Chicago Economy: A Field of Influence Analysis.” In Geoffrey J.D. Hewings, Michael Sonis and David E. Boyce (eds.) Trade, Networks and Hierarchies, Advances in Spatial Sciences, Springer-Verlag, Heidelberg, Germany (2002)

[4] Pyatt, Graham.  1991.  “Fundamentals of social accounting.”  Economic Systems Research, 3, 315-341.

[4] Pyatt, Graham and J.I. Round (eds), (1985),  Social Accounting Matrices: a Basis for Planning. Washington, DC: The World Bank.

[4] Pyatt, Graham and Jeffrey I. Round 1979. “Accounting and fixed price multipliers in a social accounting matrix framework,” Economic Journal 89, 850-73.

[4] Resosudarmo, Budi, Lucky Eko Wuryanto, Geoffrey J.D. Hewings, and Lindsay Saunders, “Decentralization and income distribution in the interregional Indonesian economy,” in Geoffrey J.D. Hewings, Michael Sonis, Moss Madden and Yoshio Kimura (eds), Understanding and Interpreting Economic Structure,  Advances in Spatial Sciences, Springer-Verlag, Heidelberg, Germany (1999)

[4] Round, Jeffrey I. 1985. “Decomposing multipliers for economic systems involving regional and world trade,” Economic Journal 95:383-99

[4] Round, Jeffrey I. 1988. "Incorporating the International, Regional and Spatial Dimension into a SAM:  Some Methods and Applications." in F.J. Harrigan and P.G. McGregor (eds.)  Recent Advances in Regional Economic Modeling London, Pion.

[2] Sherman, J. and W.J. Morrison (1950), "Adjustment of an inverse matrix corresponding to a change in an element of a given matrix." Annals of Mathematical Statistics 21, 124-127.

[2] Sherman, J., and W.J. Morrison (1949) "Adjustment of an inverse matrix corresponding to changes in the elements of a given column or a given row of the original matrix," Annals of Mathematical Statistics 20, 621.

[3] Simpson, David, and J. Tsukui (1965) "The fundamental structure of input-output tables: an international comparison." Review of Economics and Statistics 47, 434-46.

[3] Skolka, Jiri. (1989) "Input-output structural decomposition analysis for Austria," Journal of Policy Modeling 11, 45-66

[1] Sohn, Ira. (1986). Readings in Input-Output Analysis. New York. Oxford University Press.

[1] Sonis, Michael, and G.J.D. Hewings, (1993) "Hierarchies of Regional Sub-Structures and their Multipliers within Input-Output Systems: Miyazawa Revisited," Hitotsubashi Journal of Economics 34, 33-44.

[2] Sonis, Michael, and G.J.D. Hewings, (1995) “Matrix sensitivity, error analysis and internal/external multiregional multipliers,” Hitotsubashi Journal of Economics (forthcoming,)

[4] Sonis, Michael, and Geoffrey J.D. Hewings, “Economic complexity as network complication: multiregional input-output structural path analysis,” Annals of Regional Science 32: 407-436 (1998)

[2] Sonis, Michael, and Geoffrey J.D. Hewings, “Economic Landscapes: Multiplier Product Matrix Analysis for Multiregional Input-Output Systems,” Hitotsubashi Journal of Economics 40, 59-74 (1999).

[3] Sonis, Michael, and Geoffrey J.D. Hewings, “Feedbacks in Input-Output Systems: Impacts, Loops and Hierarchies.” In Michael Lahr and Eric Dietzenbacher (eds). Input-Output Analysis: Frontiers and Extensions, London, Palgrave (2001)

[4] Sonis, Michael, and Geoffrey J.D. Hewings, “LDU-factorization of Miyazawa Income Multipliers in Multiregional Systems,” Annals of Regional Science 34, 569-589 (2000)

[3] Sonis, Michael, and Geoffrey J.D. Hewings, “Matrix sensitivity, error analysis and internal/external multiregional multipliers,” Hitotsubashi Journal of Economics  36:61-70 (1995)

[1] Sonis, Michael, and Geoffrey J.D. Hewings, “Miyazawa’s contributions to understanding economic structure: interpretation, evaluation and extensions,” in Geoffrey J.D. Hewings, Michael Sonis, Moss Madden and Yoshio Kimura (eds), Understanding and Interpreting Economic Structure, Advances in Spatial Sciences, Springer-Verlag, Heidelberg, Germany (1999)

[4] Sonis, Michael, and Geoffrey J.D. Hewings, “The temporal Leontief inverse,” Macroeconomic Dynamics 2: 89-114 (1998)

[1] Sonis M., and Geoffrey J.D. Hewings, “Theoretical and applied input-output analysis: a new synthesis.  Part I, structure and structural change in input-output systems,” Studies in Regional Science, 27, 233-256 (1998).

[3] Sonis, Michael, Geoffrey J.D. Hewings and Eduardo Haddad, “A typology of propagation of changes on the structure of a multiregional economic system: the case of the European Union, 1975-1985,” Annals of Regional Science 30: 391-408 (1996)

[3] Sonis, Michael, Geoffrey J.D. Hewings and Eduardo Haddad, “The region versus the rest of the economy: the extraction method,” in H. Kohno, J. Poot, P. Nijkamp (eds) Regional Cohesion and Competition in the Process of Globalization (Elgar, 2000)

[2] Sonis, Michael, Geoffrey J.D. Hewings and Jiemin Guo, "Sources of structural change in input-output systems: a field of influence approach," Economic Systems Research, 8:15-32 (1996)

[2] Sonis, Michael, Geoffrey J.D. Hewings and Jiemin Guo, “A New Image of Classical Key Sector Analysis: Minimum Information Decomposition of the Leontief Inverse,” Economic Systems Research 12, 401-423 (2000)

[2] Sonis, Michael, Geoffrey J.D. Hewings and Ken’ichi Miyazawa, “Synergetic interactions within pair-wise hierarchy of economic linkages sub-systems,” Hitotsubashi Journal of Economics 38: 183-199 (1997)

[3] Sonis, Michael, Geoffrey J.D. Hewings and Ricardo Gazel, "An examination of multi-regional structure: hierarchy, feedbacks and spatial linkages," Annals of Regional Science 29:409-430 (1995)

[3] Sonis, Michael, Geoffrey J.D. Hewings and Sri Sulistyowati “The Structure of the Indonesian Economy: A Generalized Structural Path Analysis” Economic Systems Research 9:265-280 (1997)

[3] Sonis, Michael, Geoffrey J.D. Hewings and Yasuhide Okuyama. “Vertical Specialization and Spatial Production Cycles in Interregional Trade: Feedback Loops Analysis of the Midwest Economy.” In Geoffrey J.D. Hewings, Michael Sonis and David E. Boyce (eds.) Trade, Networks and Hierarchies, Advances in Spatial Sciences, Springer-Verlag, Heidelberg, Germany (2002)

[3] Sonis, Michael, Geoffrey J.D. Hewings, Yasuhide Okuyama and Jiemin Guo, “Japanese Regional Economic Structure Interpreted through The Multiplier Product Matrix,” Studies in Regional Science 26: 1-20 (1996)

[3] Sonis, Michael, Jiemin Guo, Geoffrey J.D. Hewings, and Edison Hulu, “Interpreting spatial economic structure:  feedback loops in the Indonesian economy, 1980, 1985” Regional Science and Urban Economics 27: 325-342 (1997)

[3] Sonis, Michael, Joaquim J.M. Guilhoto and Geoffrey J.D. Hewings, “The Asian economy: trade structure interpreted by feedback loop analysis,” Journal of Applied Input-Output Analysis 2:24-40 (1995)

[2] Sonis, Michael, Joaquim J.M. Guilhoto, Geoffrey J.D. Hewings and Eduardo B. Martins, “Linkages, key sectors and structural change: some new perspectives,” The Developing Economies, 33:233-270 (1995)

[3] Sonis, Michael, and G.J.D. Hewings, (1988) "Superposition and decomposition principles in hierarchical social accounting and input-output analysis," in Recent Advances in Regional Economic Modeling, edited by F. Harrigan and P.G. McGregor, pp. 46-65, London: Pion.

[2] Sonis, Michael, and G.J.D. Hewings, (1989) "Error and sensitivity input-output analysis: a new approach," in Frontiers of Input-Output Analysis, edited by R.E. Miller, K.R. Polenske, and A.Z. Rose, pp. 232-244, New York: Oxford University Press.

[3] Sonis, Michael, and G.J.D. Hewings, (1991a) "The 'Matrioshka' principle in the hierarchical decomposition of multiregional social accounting systems," in New Directions in Regional Analysis: Integrated and Multiregional Approaches, edited by L. Anselin, and M. Madden, pp. 101-111, London: Pinter.

[2] Sonis, Michael, and G.J.D. Hewings, (1991b) "Fields of influence and extended input-output analysis: a theoretical account," in Regional Input-Output Modeling: New Developments and Interpretations, edited by J.J. Ll. Dewhurst, G.J.D. Hewings and R.C. Jensen, pp. 141-158. Aldershot:  Avebury.

[2] Sonis, Michael, and G.J.D. Hewings, (1992) "Coefficient change in input-output models: theory and applications." Economic Systems Research 4, 143-57 1992.

[3] Sonis, Michael, G.J.D. Hewings and J.K. Lee (1994a). "Spatial economic structure and spatial multipliers: three perspectives," Geographical Analysis 26:124-151

[3] Sonis, Michael, J. Oosterhaven and G.J.D. Hewings (1993b) “Spatial economic structure and structural changes in the EC: Feedback loop input-output analysis,” Economic Systems Research 5:173-184

[3] Sonis, Michael, Yasuhide Okuyama and Geoffrey J.D. Hewings, “Feedback Loops Analysis of Interregional Trade: Case study of the Japanese Economy, 1980-85-90,” Journal of Economic Geography 1, 341-362 (2001)

[2] Van der Linden, Jan, Jan Oosterhaven, Federico Cuello, Geoffrey J.D. Hewings and Michael Sonis, "Fields of influence of technological change in EC intercountry input-output tables, 1970-80," Environment and Planning A 32, 1287-1305 (2000)

[1] West, G.R. (1981) "An efficient approach to the estimation of input-output multipliers." Environment and Planning A 13, 857-67.

 

 

Frontier Models: Theory and Application

21-23 July
3 classes=12 hours
All classes start at: 14H00.

Course Leader: Leopold Simar
                        Université Catholique de Louvain, Louvain-la-Neuve, Belgique

Purpose: To teach different types of frontier models theoretical and applied, namely the parametric and non-parametric frontier models, boostrapping, etc.

Background: A basic understanding of econometrics and linear programming is assumed.
 

More information: summerlisbon@iseg.utl.pt

Sessions: a selection of the Lecture Notes:

 1.        Introduction

1.1.      The Frontier Model, E ciency and the Statistical Paradigm

1.1.1.          The Frontier Model: Economic Theory

1.1.2.          Output and Input e ciencies

1.1.3.          Why is statistical inference needed?

 

1.2.      The Di erent Approaches

1.2.1.          Parametric vs. Nonparametric .

1.2.2.          Deterministic vs. Stochastic

1.2.3.          Cross-sections vs. Panel data

1.2.4.          Conclusions

1.2.5.          Examples of application

 

2.        Deterministic Parametric Models

2.1.      The Model

2.2.      Programming Estimators

2.3.      Least-squares Methods

2.3.1.          OLS

2.3.2.          Shifted-OLS

2.3.3.          Modi ed OLS

2.4.      Maximum Likelihood Methods

2.4.1            MLE in deterministic frontiers

2.4.2            Various deterministic models

2.5         E ciency Scores

2.5.1            Estimation of the e ciencies

2.5.2            Applications

2.6         Parametric Approximation of Nonparametric Frontiers

2.6.1            The framework

2.6.2            Two-stage approaches

2.7         Multi-output and Multi-input Case

2.7.1            The idea

2.7.2            Estimation

2.7.3            E ciencies

 

3             Stochastic Parametric Models

3.1         The Model

3.2         Estimators: MLE and MOLS

3.2.1            Likelihood function

3.2.2            Estimation in various stochastic models

3.2.3            Applications

3.3         E ciency Estimation

3.3.1            E ciency measures in various models

3.3.2            Bayesian approaches

 

4             Panel Data

4.1         Introduction: The Basic Model

4.2         Within Estimator

4.3         GLS Estimator

4.4         Semiparametric E cient Estimator

4.4.1 The Problem

4.4.2 Semiparametric e ciency bounds

4.4.3 Semiparametric e cient estimation in Stochastic Panel Frontiers

4.4.4 Applications

 

5             Sensitivity Analysis of Parametric E ciency Measures

5.1         The Problem and Parametric Approaches

5.1.1            Point estimators

5.1.2            Parametric con dence intervals for e ciency scores?

5.1.3            More robust procedure: the Bootstrap

5.2         The Bootstrap Principle

5.2.1            The aim of statistical inference

5.2.2            The Bootstrap as a Plug-in principle

5.2.3            Computational aspects: Monte-Carlo

5.2.4            Bootstrap Estimation of Bias and Standard error

5.2.5            Construction of Con dence Intervals

5.2.6            When the bootstrap works ?

5.2.7            Summary Table of the Bootstrap Ideas

5.3         The Bootstrap in Regression Models

5.4         Bootstrapping E ciencies in Parametric Frontier Model

5.4.1            General ideas

5.4.2            Cross-section: Deterministic frontier

5.4.3            Cross-section: Stochastic frontier

5.4.4            Panel-Data: Stochastic frontier

 

6             Nonparametric Deterministic Frontiers

6.1         General principles and basic ideas

6.1.1            Reminder of basic frontier concepts

6.1.2            Nonparametric Estimation

6.2         FDH Estimators

6.2.1            Free Disposability

6.2.2            E ciency estimators

6.2.3            Practical computations .

6.2.4             FDH as linear integer programming .

6.3         DEA Estimators

6.3.1            Convexity of the attainable set

6.3.2            E ciency estimators

6.3.3            The dual programs

6.3.4            Returns to scale

6.3.5            DEA estimator and Returns to scale

6.3.6            LP-canonical forms

6.4         Applications of DEA/FDH

6.4.1            In the litterature

6.4.2            Some examples

6.5         Statistical Properties .

6.5.1            Statistical foundations of FDH-DEA: consistency

6.5.2            Theoretical results: convergence theorems

6.5.3            Sampling distribution of the e ciency estimators

6.5.4            Drawback of DEA-FDH type frontier estimators

6.6         Handling Noise in Frontier Estimation

6.6.1            The Problem

6.6.2            Basic Ideas in the univariate case: Hall-Simar (2002)

6.6.3            Stochastic FDH-DEA, Simar (2003)

6.6.4            Numerical Illustrations

 

7             Robust Nonparametric Frontiers Estimation

7.1         Order-m Frontiers (Cazals-Florens-simar, 2002)

7.1.1            Reparametrization of the E cient Frontier

7.1.2            The order-m frontiers of

7.1.3            Detection of outliers

7.2         Robust Semiparametric Deterministic Frontier

7.2.1            The Framework .

7.2.2            The Problem

7.2.3            Our Two-steps Estimators

7.2.4            Some Numerical Examples

7.3         Application

 

8             Nonparametric Stochastic Frontiers with Panel Data

8.1         Introduction

8.2         The General Model and the Kernel Method

8.2.1            The model

8.2.2            Estimation of hi (x)

8.2.3            Parametric estimates

8.2.4            Rates of convergence

8.2.5            Frontier Estimation

8.2.6            Stochastic versions of DEA and FDH with panels

8.3         Firm E ect Model

8.3.1            Estimation of h

8.3.2            Estimation of i and of the frontier

8.4         Measures of e ciencies

8.4.1            Application

 

9             Sensitivity Analysis of Nonparametric E ciency Estimators 

9.1         How to Bootstrap in DEA-FDH Framework 

9.1.1            General principles and the Data Generating Process

9.1.2            The Bootstrap

9.1.3            Bootstrap con deuce intervals 

9.1.4            Bootstrap correction for bias

9.1.5            Is the bootstrap consistent ?

9.2         Homogenous case

9.2.1            Basic ideas

9.2.2            The smoothed bootstrap

9.2.3            The Algorithm

9.3         Heterogenous case

9.3.1            Basic ideas

9.3.2            The smoothed bootstrap on pairs with unknown bounded support 

9.3.3            The Algorithm

9.4         Application

 

10          Testing Productivity Changes: Inference on Malmquist indices

10.1      Introduction

10.2      The Malmquist index and its decomposition

10.2.1         The Production set and its Convex Cone closure

10.2.2         Malmquist index

10.2.3         Decomposition into e ciency, scale and technology changes

10.3      Estimating Malmquist indices

10.3.1         Convex hull: varying returns to scale

10.3.2         Conical hull: constant returns to scale

10.3.3         Inference on the Mamquist indices

10.4      Bootstrapping the Malmquist indices

10.4.1         The principles

10.4.2         Smoothed bootstrap on correlated pairs

10.4.3         The bootstrap algorithm

10.4.4         Application

 

11          Nonparametric Tests of Returns to Scale

11.1      Introduction

11.2      Measuring Returns to Scale

11.2.1         Returns to scale: a reminder

11.2.2         Scale e ciency

11.3      Nonparametric tests on returns to scale

11.3.1         Estimating the scale e clenches

11.3.2         Testing returns to scale

11.3.3         Sampling distributions of the test statistics: the bootstrap

11.4      Application

 

12          Explaining E ciencies in Parametric and Nonparametric Models

12.1      Introduction

12.2      Deterministic Parametric Frontiers

12.2.1         The setup

12.2.2 A general model

12.2.2         Estimation

12.3      Stochastic Parametric Frontiers

12.3.1         The approaches

12.3.2         The model

12.3.3         Estimation

12.4      Nonparametric Deterministic Frontiers

12.4.1         Continuous factors

12.4.2         Categorical factors

12.4.3         Two-stage procedures