
Rhizomatic Thinking and Voting Equilibria in
Large Multi-Candidate Elections under

Plurality Rule∗

João Bravo-Furtado†and Paulo P. Côrte-Real‡

Faculdade de Economia, Universidade Nova de Lisboa

February 2009§

Abstract

We consider a model of strategic voting behavior in large multi-candidate
elections under Plurality Rule where we allow for the possibility of rhi-
zomatic thinking (Bravo-Furtado & Côrte-Real [4]). Our rhizomatic as-
sumption states that each agent may, to various degrees, condition her
optimal response on an exogenous belief she possesses over the proportion
of like-minded others that will take the same action as she does. In our
pivotal-agent game, we therefore relax self-goal choice - and rhizomatic
beliefs will induce agents to perceive that they may be pivotal with a
non-vanishing probability.

We modify the trinomial pivotal-voter model of Palfrey [21] and solve
for asymptotic equilibria using appropriate techniques provided by large
deviations theory, given the distributions of preferences and beliefs. We
show existence and possible uniqueness of equilibria in this setting. We
then conclude that our model may help select equilibria, adding predic-
tive power to standard game-theoretic settings. We also find that Du-
verger’s Law may be violated in equilibrium and, as an application, we
suggest rhizomatic thinking can help provide a compelling rationale for
the non-Duvergerian outcome of 1992 US presidential election. Corre-
lations between rhizomatic beliefs and preferences explain the different
equilibrium outcomes and our model therefore calls attention to the role
of partisanship and group identity in plurality election outcomes.
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1 Introduction

Large elections have an obvious importance in democratic life and the design
of optimal voting rules must take into account its impact on voting behavior.
Standard notions of individual rationality may however fail to fully account for
observed behavior by voters in large elections. Our main purpose is to research
the impact that the concept of Rhizomatic Thinking (RT) introduced by Bravo-
Furtado and Côrte-Real [4] can have in this setting.
In Biology, "rhizome" is the term for a usually underground horizontal stem

of a plant that often sends out roots and shoots from its nodes. Deleuze and
Guatarri [7] generalize the concept of a rhizome as an acentered and non-
hierarchical system made up of possibly heterogeneous connections. We bor-
rowed this notion of a rhizome to introduce the concept of RT. Our rhizomatic
behavior assumption states that each agent i may, to various degrees, condition
her optimal response on an exogenous rhizomatic belief (RB), qi ∈ [0, 1], she
possesses over the proportion qi of "like-minded" others that will take the same
action as she does. Each agent therefore interprets her own decision as a diag-
nosis of the decisions that this proportion of "like-minded" others will take. The
class of “like-minded” others is game specific, and in most cases it corresponds
to the class of agents who share that agent’s preferences. If each agent’s RB
is taken to be zero, we recover the standard game-theoretic framework and our
assumption can therefore be seen as a generalization of the classical assumption.
We have argued that this may be a unifying assumption on rationality that

allows for a general application in games (Bravo-Furtado and Côrte-Real [4]),
and that may be particularly useful in collective action settings. If this is the
case, RT may provide a strong additional rationale for instrumental behavior by
agents in pivotal-agent games (PAG), especially when the number of players is
very large. In such cases, game theory prescribes that purely individually ratio-
nal agents condition their actions on the event that they are pivotal (an event
with an infinitesimal likelihood). It is questionable to what an extent such a
rationale may plausibly explain relevant instrumental motivations for voluntary
participation and/or strategic behavior in large elections when compared to ex-
pressive motivations, for example. However, rhizomatic agents may no longer
perceive their pivot probability as infinitesimally small, which may therefore
enhance the plausibility of such instrumental behavior. RT may therefore add
explanatory and predictive power and produce results that differ substantially
from those of standard game-theoretic models. Our purpose is to study the
effects of introducing RT in PAG, namely by modeling voting behavior in large
multi-candidate elections under Plurality Rule (PR).
We consider the population of voters who actually do vote or, equivalently,

we do not allow for abstention. It is important to note that RB not only
provide agents with additional instrumental motivation to vote strategically but
also to participate in elections. However, whereas strategic decisions regarding
candidate choice cannot be justified by expressive motivations, it is more difficult
to isolate the effects of expressive motivations and rhizomatic thinking with
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respect to participation. Although it is debatable whether the two decisions are
separable, we therefore choose to focus our analysis on candidate choice.
Our model is based on the trinomial model presented by Palfrey [21]. The

key difference is that we now endow each agent with a RB besides the standard
linear ordering over candidates, where both preferences and the distributions
of RB are common-knowledge. The multinomial model turns out to be most
appropriate in order to incorporate RT as well as any alternative behavioral
assumptions. Our model can be seen as an extension of Palfrey’s, which results
from setting all RB equal to zero. However, our main contribution may be the
particular nature of this extension: we enrich the model by adding diversity
from a behavioral viewpoint, rather than by adding informational uncertainty.
The latter approach has widely been undertaken in the literature (see Myatt
[20] for a recent example). It is also worth remarking that solving our model
analytically for asymptotic equilibria requires different techniques from those
used by Palfrey [21]. Fortunately, large deviations theory provides fully adequate
and easier-to-handle tools to this effect, which are required in order to obtain
accurate approximations for the tails of the multinomial distribution.
Palfrey’s main result establishes Duverger’s Law as a regularity: only two-

party equilibria arise as possible outcomes, since voters who prefer the least
voted-for candidate respond by voting for their second-ranked candidate in any
equilibrium, whereas all other voters vote for their top-ranked candidate. In
fact, as Laslier [15] points out. any classical pivotal-voter model in which the
distribution of preferences is common-knowledge — such as the Poisson-Myerson
model with population uncertainty -, will produce the same result under PR.
In our model, however, the rhizomatic best responses of voters who prefer the
least voted for candidate will generically depend on their RB in any equilibrium
(whereas all other voters still vote for their top-ranked candidate). Such best
responses are characterized by cutoff levels of the RB for each type, which are
a function of the distributions of preferences and RB, depending also on the
equilibrium probabilities. Voters who prefer the least voted-for candidate and
whose RB is above the threshold level for her type1 will now vote for their most
preferred candidate. This is the first main result of the paper and allows us to
characterize the equilibria of the voting game.
We then show existence of equilibria and proceed to analyze examples that

allow for predictions that differ from Palfrey’s. On one hand, uniqueness of
equilibrium is possible and unique orderings can be achieved even if there is no
unique equilibrium: equilibrium selection will in general result from RT, refining
the standard plethora of equilibria in large elections and endowing the theory
with a stronger predictive power.
We also conclude that if there is one preference ordering that is shared by

at least half of the voters then that alternative always wins provided agents
are rhizomatic "enough"; in this particular case, we eliminate couterintuitive
Duvergerian equilibria in which such an alternative would come in last. More-
over, three-party equilibria may occur and Duverger’s Law may fail to hold.

1 If any exist, and whenever this threshold is below 1.
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This is an important consequence of our model and it may help explain ob-
served non-Duvergerian outcomes in plurality elections. This may help explain
why Duverger’s Law is not a regularity in elections in India (where in fact it
hardly ever holds) and in constituency-level elections in the UK, to cite the most
well-known exceptions (Myatt [20]). It can also provide a rationale for other
examples such as the 1992 US presidential election where Ross Perot received
a significant proportion of the popular vote in almost all states. We discuss in
detail the three-candidate outcome of the Bush-Clinton-Perot presidential race
and show that RT and correlations between preferences and beliefs can add
insight to this particular case.
In general, vote manipulation is (weakly) decreasing in RB but the driving

forces that may bring about different equilibrium outcomes are the distributions
of preferences and rhizomatic beliefs, including the respective correlations. We
therefore suggest that besides preference formation, there is another potential
field of interest for political or party strategists: campaigns may influence the
formation of rhizomatic beliefs, whether by creating feelings of group-identity
among partisans or by appealing to strategic voting from supporters for other
parties.
The paper proceeds as follows:
Section 2 reviews the literature. Due to the multi-disciplinary scope of our

analysis, we split it twofold. We first examine the determinants of voting be-
havior and argue that RT can capture alternative rationales proposed in the
literature to explain strategic voting behavior in PAG. We then proceed to
focus on the regularity of Duverger’s Law. We then.review Bravo-Furtado &
Côrte-Real [4] and argue in detail why we find RT to be an appropriate and
unifying notion of rationality for modeling behavior in games and specifically in
collective action settings such as PAG.
In section 3 we present and solve our model asymptotically. We specify the

best responses for all agents and characterize the asymptotic equilibria resorting
to technical results from large deviations theory (results that we summarize in
Appendix A). We proceed to discuss the limitations of the model and the
main characteristics of our results, the assumptions, and possible extensions
and generalizations. We then argue that simple discrete distributions of RB can
be used to capture fairly general distributions with no loss of generality and with
considerable gains in terms of insight. This allows us to understand equilibrium
selection and the effects of correlations between RB and preferences.
Section 4 studies illustrative examples that allow us to understand the mech-

anisms that drive equilibrium selection and to achieve possible policy implica-
tions.
Section 5 concludes and summarizes the main findings.

2 Literature Review
Standard game theory assumes - and prescribes - individual rationality as the
sole determinant of each agent’s behavior. According to Sen [30], individual
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rationality is characterized by three independent and complementary assump-
tions: self-centered welfare ("a person’s welfare depends only on his or her own
consumption"), self-welfare goal ("a person’s only goal is to maximize his or her
own welfare" and not "the welfare of others"), and self-goal choice ("each act of
choice of a person is guided immediately by the pursuit of one’s own goal" and
"in particular, is not restrained by the recognition of other people’s pursuit of
their goals"). Several authors have long criticized this assumption, namely in
collective action settings, on both positive and normative counts (see Sen [27],
[29], [30]). However, no alternative unifying concept of rationality has so far
been formalized in order to address this criticism.
A related line of criticism with respect to the concept of individual rational-

ity, pointed out by Sen [28] and Gilboa et al. [12], is its applicability to large
games such as elections. In the past two decades, studies of large elections under
game-theoretic settings (such as Palfrey’s [21]) have provided strong theoretical
support in favor of Duverger’s Law : in a three-candidate election, there would
only be two-party equilibria. However, empirically this is not the only observed
outcome — constituency-level elections on the UK and India are well-known ex-
ceptions. One theoretical exception to the prediction of Duvergerian outcomes
is that of Myatt [20]. Myatt’s approach is based on signals and informative vot-
ing and his three-party equilibrium predictions rely solely on voters’ uncertainty
with respect to the identity of the leading defiant candidate. Myatt’s contextu-
alization therefore requires that polls, or alternative informational mechanisms,
are sufficiently uninformative about the relevant priors to all voters - and other
settings would still lead to Duvergerian outcomes.
Standard notions of individual rationality applied to large elections seem to

be unable to explain non-Duvergerian outcomes but also fail to explain why only
certain focal equilibria emerge in practice - and are unable to explain turnout as
well. Recent voting literature has started to question "full" individual rational-
ity (see Dhillon and Peralta [9] for a survey of the literature on turnout), as well
as the connection between preference and choice (see, for instance, Côrte-Real
[6]). Over the past few years, political scientists (Felsenthal et al. [11], Felsen-
thal [10], McKelvey & Ordeshook [16] and [18], Rietz [23], Scotto & LaFone
[25]) have also shown an increasing interest in the effects of strategic voting be-
havior on coordination and political representation in multi-candidate elections,
for which there is abundant empirical and experimental evidence - but that still
lacks an adequate theoretical model.
Other scientific branches suggest alternative rationales for collective action.

Agents may believe that their voting decision induces others to vote likewise
(magical thinking). Alternatively, agents may merely believe that their own
actions are a diagnosis of collective behavior, that is, they may read their own
vote as a sign that many like-minded others will vote too, and perhaps with the
same voting pattern ("illusory correlation" - beliefs that inaccurately suppose a
relationship between a certain type of action and an effect).
Goldberg et al. [13] suggest individual agents may follow a "what if everyone

acted that way" type of reasoning, referred to in the Cognitive Sciences literature
as the "voter’s illusion" or, equivalently, as the mixture of "symmetry" and the
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"illusion of control".
With the paper by Brams [3] on Newcomb’s problem and the prisoner’s

dilemma, and the influential work of Quatronne & Tversky [22], collective rea-
soning - namely the "voter’s illusion" - has emerged as a likely determinant for
strategic voting behavior and coordinated outcomes. It is the one for which ex-
perimental evidence is most consistent (Morris et al. [19], Acevedo & Krueger
[1]) and provides a rationale for strategic behavior with less demanding compu-
tational requirements. In its weakest version, agents consider their own behavior
as a diagnosis of the behavior of like-minded others (agents with the same pref-
erences or in the same "group"). However, instead of considering this feature
as a departure from rationality, some authors argue that the correct rationality
concept has to be thought of as an integrating part of the context that it is used
in (Acevedo & Krueger [1]).
Also, models that allow for explicit individual bounded-rationality seem to

be of little use in the context of large collective action games.
One such example is the hybrid model by Camerer, Palfrey & Rogers [5],

that captures both cognitive hierarchy (CH) and quantal response (QR) equilib-
rium models. However, CH models are not computable for large games, and QR
models assume that players have decreased payoff responsiveness. The correct
direction for any strategic pivotal model of voting capable of increasing predic-
tive power seems to demand an assumption that translates into the model by
making agents act as if they were more often pivotal than what they really are.

In Bravo-Furtado & Côrte-Real [4], we argued extensively why RT may be
an appropriate concept to model collective action, particularly in large games,
reconciling individual and more collective notions of rationality.
An agent will think rhizomatically if she believes that a proportion of like-

minded others will take the same action as she does. The agent therefore per-
ceives a connection (that is actually “inexistent”) among herself and like-minded
others. By allowing for RT, we are therefore allowing for the mental mechanism
to be such that the agent believes that she belongs to a network with no actual
links, and such that she acts in accordance with that belief. We thus add a new
variable to the classical game-theoretic setting: an exogenous belief that is an
idiosyncratic feature of the agent i.e. a feature of an agent’s "privateness" (Sen
[30]).
Anderson [2], in his analysis of nationalism, states that «A nation is “an

imagined political community”. It is imagined because the members of even
the smallest nation will never know most of their fellow-members, meet them,
or even hear of them, yet in the minds of each lives the image of their commu-
nion. (...) In fact, all communities larger than primordial villages of face-to-face
contact (and perhaps even these) are imagined.». The idea of an imagined com-
munity is one of the components of RT; the second important component is the
restriction on an agent’s action imposed by this “imagined community”.
A person who is reading a book while waiting for a medical appointment

and who decides to close the book at a given moment may perceive that several
other people around the world performed that same action at the same time,
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and yet perceives no connection among those actions. On the other hand, in
a collective action context such as voting, the perception of simultaneity may
also involve the perception of connection among actions. This example suggests
that mental processes matter and are liable to depend on specific contexts, like
Rubinstein and Salant [24] point out. RT seems capable of encompassing this
diversity and context-dependence in a general and unifying way.
We should stress that RT relaxes only the self-goal choice assumption, even

though self-interest may well continue to drive agents’ behavior — and it en-
compasses individual rationality as well as a special case. Moreover, RT can
also capture the ideas of collective reasoning, mutual interdependence, group
identity (and “impure altruism”), as well as cognitive biases such as the belief
in personal relevance, the voter’s illusion and the illusion of control2.
The tension between individual and collective notions of rationality becomes

particularly prominent in collective action settings. In order to address sev-
eral open questions regarding voting behavior in a large election (where group
identity may indeed play a significant role), namely to examine the validity of
Duverger’s Law and the selection of focal equilibria, we therefore introduce the
concept of RT.to model a large voting game under PR.

3 The Model
We first define the fundamental concepts.
Consider a normal form game with N players. Let Si denote the space of

pure strategies and let Σi = ∆(Si) be the space of mixed strategies. Let Ni ⊆ N
be the game-specific set of agent i’s like-minded agents. Let qi ∈ Qi ⊆ [0, 1] be
the rhizomatic type of agent i, that is, the proportion of agents in Ni that agent
i believes will take the same action as she does. Let λi stand for all components
of i’s type other than i’s rhizomatic belief. Player i’s type can then be denoted
by ti = (λi, qi). We assume that ti is known only to player i. Let F denote a
(common-knowledge) cumulative distribution function (cdf) of types and let Fi
denote the marginal cdf for player i.

Definition 1 A rhizomatic strategy for agent i is a map pi : Ti = Λi×Qi → Σi.
Let ui(pi, p−i, ti |ti ) denote player i’s expected payoff associated with playing

pi when all others are playing p−i, given that her type is ti. As usual, −i denotes
j = 1, ..., N with j 6= i.
Note that the choice of terminology is meant only to emphasize the exogene-

ity of beliefs qi, which are now part of an agent’s type: in all other regards, the
definitions are equivalent to those in Bayesian Nash settings.

Definition 2 A rhizomatic strategy pi is a Rhizomatic Best Response (RBR)
to p−i if for all p0i and for all t

0
i

2 In any case, mental processes are very different under each assumption. The “voter’s
illusion” cognitive bias implies that agents actually perceive an “illusion of control”: their
decision is perceived as influencing others to act likewise, whereas RT is a horizontal notion.
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Et−i(ui(pi(t
0
i), p−i(t−i), t

0
i) |t0i )) ≥ Et−i(ui(p

0
i, p−i(t−i), t

0
i) |t0i )).

Definition 3 A Rhizomatic Nash Equilibrium (RNE) is a vector of rhizomatic
strategies (p1, ..., pN ) such that, ∀i, pi is a RBR to p−i.

Definitions 2 and 3 characterize the equivalent of Bayesian Nash Best Re-
sponse and Bayesian Nash Equilibrium under a common-knowledge distribution
of priors with private realizations of types.

We can now present the model.
There are three candidates, A, B and C, and polity with a large number N

of voters.
Each voter i has a strict preference ordering over the three candidates.

A voter’s preference for each candidate is represented by a Von Neumann-
Morgenstern utility number, normalized so that voter i receives a utility of
1 if her preferred candidate wins, a utility of 0 if her least preferred candidate
wins, and a utility of λi ∈ (0, 1) if the winner is her middle-ranked candidate.
Each voter also possesses an exogenous rhizomatic belief, qi ∈ [0, 1], as to

the proportion of like-minded others she believes will always choose the same
action as she does.
Let a jk−voter denote a voter whose preferred candidate is j and whose

second-preferred candidate is k. Let ljk represent the average proportion of
jk−voters in the electorate. Hence, lAB+ lAC+ lBA+ lBC+ lCA+ lCB = 1. The
relevant rhizomatic class of "like-minded" others for a jk−voter is the class of
other ljkN − 1 jk−voters plus herself3 .
Let a jk−type denote a jk−voter whose utility if k wins is λi, and whose

rhizomatic belief is qi. Let Fjk(., .) represent the cumulative distribution function
(cdf) of jk−types.
We assume that ljk and Fjk(., .) are common knowledge, for all j, k ∈

{A,B,C} : j 6= k, and that each voter’s type is drawn independently from
the probability distribution P = (lAB , ..., lCB, FAB , ..., FCB).
We also assume that no voters abstain and introduce the following additional

assumptions:

Assumption 1 ljk > 0, for all j, k ∈ {A,B,C} : j 6= k.

Assumption 2 Fjk(., .) is twice continuously differentiable for (λi, qi) ∈ (0, 1)×
(0, 1) and ∂

∂λFjk(λ, q) > 0,∀(λ, q) ∈ (0, 1)×(0, 1) , for all j, k ∈ {A,B,C} :
j 6= k. Furthermore, Fjk(0, qi) = 0, Fjk(1, qi) = Gjk(qi) and Gjk(0) =
qjk ∈ [0, 1].

Assumption 1 states that all possible preference rankings occur: this is a
minor technical assumption and its only purpose is allowing to state our results
for all possible polities. It can, however, be easily relaxed in a straightforward
manner without affecting the results.

3Note that a voter only knows the average number of "like-minded" others; this uncertainty
vanishes as N →∞.
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Assumption 2 rules out mass points in λi and in qi ∈ (0, 1). It ensures it is
a zero-measure event for two voters to have the same preference ordering and
the same intensity of preference λi (this can also be straightforwardly relaxed
in our asymptotic setting). However, we allow for mass points in q ∈ {0, 1}. On
one hand, we would like to allow for a proportion of voters not to be rhizomatic
at all; on the other hand, this allows us to recover the standard framework (if
this proportion is equal to 1). The possibility of mass points at q = 1 will not
affect our results and will allow us to analyze examples of discrete distributions
as well.
The voting game is standard. Under PR, each voter simultaneously chooses

one candidate to vote for and the candidate with the highest number of votes will
win. Following Palfrey [21], and for simplicity, ties will be broken alphabetically
(e.g. A beats B in a tiebreaker). This assumption will not affect our results
since ties are zero-measure events when N →∞.
We will look for (pure strategy) symmetric Rhizomatic Nash Equilibria, i.

e. Bayes-Nash equilibria conditioned on a voter’s type (which includes her
rhizomatic belief), in which no voter chooses a weakly dominated strategy. A
(pure) strategy for agent i under PR is therefore a measurable function

σPRi : {AB,AC,BA,BC,CA,CB} × (0, 1)× [0, 1]→ {A,B,C} (1)

In a pure-strategy symmetric Rhizomatic Nash Equilibrium σPRi = σPR for
all i.

3.1 Plurality Rule (PR)

Let [X] denote the highest integer smaller than or equal to X. A jk−type per-
ceives the number of agents that will take the same action as she does (including
herself) to be

MN
jk = 1 + [qi(Nljk − 1)] 4 .

Let ON
jk = N −MN

jk = N − 1 − [qi(Nljk − 1)] be the set of agents that i
does not perceive as "linked" to her. Let πj denote the probability a randomly
selected voter out of ON

jk votes for j, such that πA + πB + πC = 1, πj ≥ 0. For
any σPR and (πA, πB, πC), we can characterize a Rhizomatic Best Response for
any voter i. We do so, without loss of generality, for an AB-type.
Let:

pNAB = probability that voting for A yields A, but voting for B yields B.
pNAC = probability that voting for A yields A, but voting for B yields C.
pNCB = probability that voting for A yields C, but voting for B yields B.

4We assume that, whenever 1+qi(Nljk−1) is not an integer, i perceives 1 + qi(Nljk − 1)
as the number of agents that take the same action as she does.

9



Lemma 4 (adapted from Palfrey [21]): If voter i is an AB-type, and if the
remaining ON

AB voters that i does not perceive as "linked" to her use σPR,
generating probabilities (πA, πB , πC), then i’s Rhizomatic Best Response is:
i) Vote for A if pNAB(1− λi) + pNAC > pNCBλi.
ii) Vote for A if (i) holds with equality (voting for B would be a dominated

strategy).
iii) Vote for B if pNAB(1− λi) + pNAC < pNCBλi.

Note that, whenever MN
AB ≥ ON

AB ⇔ MN
AB ≥ N

2 , an AB type always votes
for A.
In all other non-trivial cases, that is, whenever MN

AB < ON
AB ⇔MN

AB < N
2 ,

the probabilities pNAB , p
N
AC and pNCB result from the trinomial distribution with

parameters ON
AB and πj, j = A,B,C. We derive below these probabilities for

an AB type, without loss of generality. For ease of notation, we will henceforth
omit the subscript i and also the superscript N and the subscript AB from ON

AB

and MN
AB . Let a be the number of other O voters who vote for A, b who vote

for B and c who vote for C5. Hence,

a+ b+ c = O

Note that M + a ≥ b∧M + a ≥ c are the conditions required for A winning
when i votes for A, and M + b < c∧ a < c are the conditions for a victory of C
when i votes for B. .Thus, pNAC is the probability that out of O other voters, a
vote for A, b vote for B, c vote for C, and M + a ≥ b ∧M + a ≥ c ∧M + b <
c ∧ a < c ∧ a, b, c ≥ 0 i.e. pNAC = Pr(c > a ≥ c−M > b ≥ 0).
Let the number of votes for A, B and C respectively be k, O − 2k − l, and

k + l. From the above conditions, we get:

c > a⇔ l > 0

a ≥ c−M ⇔ l ≤M

c−M > b⇔ k >
N − 2l
3

and finally, b ≥ 0⇔ k ≤ O − l

2

which yields

pNAC=
MX
l=1

[O−l2 ]X
k=[N−2l3 ]+1

µ
O

k

¶µ
O − k

k + l

¶
πk
Aπ

O−2k−l
B πk+l

C

In a similar way, pNCB is the probability that out of O other voters, a vote
for A, b vote for B, c vote for C, and M + a < c∧ b < c∧M + b > a∧M + b ≥
c ∧ a, b, c ≥ 0 i.e. pNCB = Pr(c > b ≥ c−M > a ≥ 0).

5We are also omitting the subscript N for a, b and c.

10



Let the number of votes for B be k, for C, k+ l, and for A, O−2k− l. Then,

pNCB =
MX
l=1

[O−l2 ]X
k=[N−2l3 ]+1

µ
O

k

¶µ
O − k

k + l

¶
πO−2k−lA πkBπ

k+l
C

Also, pNAB is the probability that out of O other voters, a vote for A, b vote
for B, c vote for C, andM+a ≥ b∧M+a ≥ c∧M+b > a∧M+b ≥ c∧a, b, c ≥ 0.
In this case, it helps splitting the above conditions into two mutually exclu-

sive cases: a ≥ b and a < b.
Thus, pNAB = Pr(M+b > a∧M+b ≥ c∧b ≥ 0∧c ≥ 0∧a ≥ b)+Pr((M+a ≥

c ∧M + a ≥ b ∧ a ≥ 0 ∧ c ≥ 0 ∧ a < b) =

pNAB =
M−1X
l=0

[O−l2 ]X
k=max{0,R}

µ
O

k

¶µ
O − k

k + l

¶
πk+lA πkBπ

O−2k−l
C +

+
MX
l=1

[O−l2 ]X
k=max{0,R}

µ
O

k

¶µ
O − k

k + l

¶
πkAπ

k+l
B πO−2k−lC

where R =
½ £

O−M−l
3

¤
+ 1, if O−M−l

3 /∈ N
O−M−l

3 , if O−M−l
3 ∈ N .

Note that, as it ought to be the case, the expressions for the probabilities
above reduce to those in Palfrey [21] when q = 06 .
From Lemma 1, if pNjk > 0 ∨ pNlk > 0, inequality (i) and equality (ii) yield

λjk ≤
pNjk + pNjl
pNjk + pNlk

, j, k, l = A,B,C ∧ j 6= k 6= l (2)

As in Palfrey [21], strategic voting requires λ to be large enough and that
the voter is more likely to be pivotal between her second and least preferred
candidate than between her first and last.
In order to fully characterize a RNE, we must impose that the values of the

probabilities πj , j = A,B,C, are in fact confirmed in equilibrium. An equilib-
rium is therefore characterized by a set of six cutpoints, λNjk, j, k ∈ {A,B,C} :
j 6= k, each of which must either be 1 or satisfy condition 2 with equality. Since
the cutpoints depend on rhizomatic beliefs in a way to be specified ahead, we
delay the presentation of the asymptotic equilibrium conditions that confirm the
equilibrium probabilities until the necessary results to this effect are established.

6The lower and upper bounds of the summations in Palfrey (1989) contain a few obvious
typos
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3.2 Asymptotic Equilibria

Since we are considering very large electorates (N → ∞), we can establish
the asymptotic properties of the probabilities derived above for a jk−type with
q > 0 (for q = 0, the results coincide with Palfrey’s) and therefore determine the
best responses for each type of voter. The following two Propositions are crucial
for our results. With no loss of generality, we state them for an AB−type.

Let x ≡ xAB =
qlAB
1−qlAB . Let ∆ denote the two-dimensional simplex. Let:

EAC =

½
(πA, πC) ∈ ∆ : πC > πA ∧ πC ≤ x+ πA ∧ πC >

1 + x

2
− πA
2

¾
ECB =

½
(πA, πC) ∈ ∆ : πC >

1

2
− πA
2
∧ πC ≤ 1 + x

2
− πA
2
∧ πC > x+ πA

¾
EAB =

½
(πA, πC) ∈ ∆ : (πC ≥ 1− 2πA ∧ πC < 1+x

2 − πA
2 ∧ πC ≤ 1 + x− 2πA

∨πC < 1− 2πA ∧ πC ≤ x+ πA ∧ πC ≥ 1− x− 2πA)
¾

Let closure(Ejk) denotes its closure and let ext(Ejk) denotes the exterior of
Ejk. Then ext(Ejk) = ∆ \ closure(Ejk).

Proposition 5 Let Assumptions 1 − 2 hold. Let voter i be an AB type with
q > 0. Then,

i) pNAC →
N→∞

½
1, if (πA, πC) ∈ EAC

0, if (πA, πC) ∈ ext(EAC)

ii) pNCB →
N→∞

½
1, if (πA, πC) ∈ ECB

0, if (πA, πC) ∈ ext(ECB)

iii) pNAB →
N→∞

½
1, if (πA, πC) ∈ EAB

0, if (πA, πC) ∈ ext(EAB)
Proof. The proof results straightforwardly from the strong Law of Large Num-
bers (LLN) and from the inequalities involving a = aN , b = bN and c = cN , that
define each of the probabilities above.
If aN , cN ∼ trinomial (O,πA, πC), then the sequence (aN , cN ) satisfies the

strong LLN:
aN
O

a.s.→
N→∞

πA,
cN
O

a.s.→
N→∞

πC

so that

P

µ
lim

N→∞
jN
O
− πj = 0

¶
= 1, j = a, b, c

i) From c > a ≥ c −M > b ≥ 0, replacing b = O − a − c, dividing all
inequalities by O and taking limits as N →∞, we obtain, from the strong LLN
that the result must hold whenever

πC > πA ∧ πC ≤ x+ πA ∧ πC >
1 + x

2
− πA
2
∧ πB ≥ 0

Note that a+ b+ c = O and a, b, c ≥ 0, imply that πA + πC ≤ 1.
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ii) Similarly, from c > b ≥ c −M > a ≥ 0, we obtain that the result must
hold whenever

πC >
1

2
− πA
2
∧ πC ≤ 1 + x

2
− πA
2
∧ πC > x+ πA ∧ πA ≥ 0

iii) Finally, from (a ≥ b∧M + b > a∧M + b ≥ c∧ c ≥ 0)∨ (a < b∧M +a ≥
c ∧M + a ≥ b ∧ c ≥ 0), we get that the result must hold whenever

(πC ≥ 1− 2πA ∧ πC <
1 + x

2
− πA
2
∧ πC ≤ 1 + x− 2πA

∨πC < 1− 2πA ∧ πC ≤ x+ πA ∧ πC ≥ 1− x− 2πA) ∧ πC ≥ 0

Note that the above Proposition does not characterize the limits of the
above probabilities in all the euclidean zero-measure frontiers of the sets Ejk,
Front(Ejk). However, the following Proposition allows for a characterization of
RBR almost everywhere in the simplex.
Proposition 6 completes Proposition 5, in the sense that it states how an AB

type rhizomatically best responds, as a function of πA and πC , in the regions
where all three probabilities, pNAC , p

N
CB and pNAB go to zero as N →∞.

Again, with no loss of generality, we state it for an AB type with q > 0. Let:

E1 = {(πA, πC) ∈ ∆\ {(0, 0)} : πC ≤ πB ∧ πB ≥ x+ πA ∧ x < 1}
E2 = {(πA, πC) ∈ ∆\ {(0, 1)} : πC ≥ x+ πB ∧ πC ≥ x+ πA ∧ x < 1}
E3 = {(πA, πC) ∈ ∆ : πC ≤ πA ∧ πA ≥ x+ πB ∧ x < 1}

Proposition 6 Let Assumptions 1 − 2 hold. Let voter i be an AB-type with
q > 0. Asymptotic RBR (as N →∞) are as follows:

i) If qlAB ≥ 1
2 ⇔ x = qlAB

1−qlAB ≥ 1, an AB-type will vote for A.
ii) Let (πA, πC) ∈ E1. If qlAB ≥ 1

3 , an AB-type will vote for A. If qlAB <
1
3 ⇔ x = qlAB

1−qlAB < 1
2 , let qAB be given implicitly and uniquely by the equation

ln
πC +

p
x2π2C − 4πAπBx2 + 4πAπB

(1− x2)
¡
πA + 2

√
πBπC

¢ (3)

= x ln
1

2πB − 2xπB

µ
xπC +

q
x2π2C − 4πAπBx2 + 4πAπB

¶
then, if πA > 0, an AB type will vote for B whenever q < qAB and will vote for
A whenever q > qAB. If πA = 0, an AB type will vote for B.

iii) Let (πA, πC) ∈ E2. If qlAB ≥ 1
2 , an AB-type will always vote for A. If

qlAB < 1
2 , an AB type will vote for B whenever πB > πA, and will vote for A

whenever πB < πA.
iv) Let (πA, πC) ∈ E3. Then, an AB-type will always vote for A.
v) If (πA, πC) = (0, 0) or (πA, πC) = (0, 1), an AB-type votes A.
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πA

πC

1

11/2

1/2

x

1-x

(1+x)/2

ECB

E2

E1 E3EAB

EAC

Figure 1: The diagram represents the partition of the simplex into the relevant
regions for Propositions 5 and 6.

Notice that when x = x = 0, 3 simplifies to πC+2
√
πAπB

πA+2
√
πBπC

= 1 ⇔ πC +

2
√
πAπB = πA + 2

√
πBπC ⇔ πC = πA, ∀(πA, πC) ∈ E1, and so Proposition 6

holds also for q = 0, in which case it captures the results from Palfrey [21].
The proof of Proposition 6 proceeds in several steps and is presented in

appendix B. However, since it relies on very different techniques from those
used in Palfrey [21], it is instructive to sketch the main steps of the proof in the
text.

Sketch of the proof of Proposition 6: Let (πA, πC) ∈ E1 ∩ int∆
and qlAB < 1

3 . From 2, an AB type will vote for A as long as λAB ≤
(1 +

pNAC
pNAB

)/(1 +
pNCB
pNAB

). In order to characterize asymptotic RBR, we need to

compute lim
N→∞

(1 +
pNAC
pNAB

)/(1 +
pNCB
pNAB

), in a set in which all three probabilities go

to zero as N grows large. Furthermore, we cannot use the approximation of the
trinomial distribution to the bivariate normal distribution, since this approxi-
mation is valid only when the deviation of jN from Oπj is of the order of

√
O,
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j = a, b, c, and in our setting this deviation is of order O. We are thus in the do-
main of large deviations/rare events, in which large deviations theory provides
us the adequate tools for obtaining asymptotically accurate results. Appendix
A contains the definitions and results from large deviations theory that are used
in this essay.
Let j0 ≥ 0 be the sample mean of jN , j0 = jN

O , jN = aN , bN , cN . Then
a0 + b0 + c0 = 1. Let

I(a0, c0) = a0 ln
a0

πA
+ (1− a0 − c0) ln

(1− a0 − c0)
πB

+ c0 ln
c0

πC
(4)

be the (unique) rate function of the trinomial distribution (b0 = 1 − a0 − c0

was used in the above expression, and 0 ln 0 is conventionally defined to be 0).
Working with the rate function of the trinomial distribution and apply-

ing Varadhan’s Theorem (usually referred to in the literature as Varadhan’s
Lemma), we establish the following Lemma:

Lemma 7 Let Assumptions 1− 2 hold. Let voter i be an AB type with q > 0.
Let πj > 0, j = A,B,C. Let (πA, πC) /∈ Ejk. Then,

lim
O→∞

1

O
ln pNjk = sup

(a0,c0)∈Ejk
− I(a0, c0) 7 (5)

Using Stirling’s approximation,

O! '
√
2πO

µ
O

e

¶O
it is straightforward to establish that the probability function

f(a0, c0) = f(aN , cN ) =
O!

aN !(O − aN − cN)!cN !
πaNA πO−aN−cNB πcNC

verifies the following identity

lim
O→∞

1

O
ln f(., .) = −I(., .). (6)

Since I is strictly convex, 5 provides a simple way of computing the rate
at which all three probabilities tend to zero, by solving optimization problems
with unique optimizers. Varadhan’s Lemma gives expression to the intuitive
fact that, asymptotically, almost all of the mass of pNjk lies in the "closest" point
in Ejk, as measured by the statistical distance I(., .), to (πA, πC) ∈ E1 ∩ int∆.
Thus, unless sup

(a0,c0)∈ECB
− I(a0, c0) = sup

(a0,c0)∈EAB
− I(a0, c0), which happens when

3 holds, pNCB and pNAB will converge to zero at different rates. More precisely, if
q is given by 3, we have

7There is an abuse of notation here: Ejk was originally defined as a set of equilibrium
probabilities, (πA, πC); here, the variables are in fact (a0, c0).
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lim
N→∞

pNCB
pNAB

=

½ ∞, q < q
0, q > q

.

Noting that lim
N→∞

pNAC
pNAB

= 0, since any point in EAC is more "distant" that

any point in EAB, for all (πA, πC) ∈ E1 ∩ int∆, we obtain the cutoff λAB such
that

λAB = lim
N→∞

1 +
pNAC
pNAB

1 +
pNCB
pNAB

=

½
0, q < q
1, q > q

Hence, an AB type will vote for A if q > q and for B if q < q.
For qlAB ≥ 1

3 , it is easy to establish that an AB type always votes for A (see
appendix B). Finally, the validity of the result is straightforwardly established
for the cases where πA = 0 or πC = 0.
For (πA, πC) ∈E2 the steps are identical, only now the solution of sup

(a0,c0)∈ECB
−

I(a0, c0) = sup
(a0,c0)∈EAC

− I(a0, c0) is simply πB = πA. Also, the cutoff λAB is:

λAB = lim
N→∞

pNAB
pNCB

+
pNAC
pNCB

pNAB
pNCB

+ 1
=

½ ∞, πA > πB
0, πA < πB

Finally, if (πA, πC) ∈ E3, it is immediate that if an AB type votes for A, A
always wins. This ends the sketch of the proof.

Gathering Propositions 5 and 6 immediately establishes our main result for
RBR.

Let E = {(πA, πC) ∈ ∆ : πC < 1− 2πA ∧ πC > x+ πA}∪{(πA, πC) ∈ E1 : q < qAB},
where qAB is as defined in Proposition 6.

Theorem 8 Let Assumptions 1−2 hold. Let voter i be an AB type with q > 0.
Asymptotic RBR (as N →∞) are as follows:

i) Let (πA, πC) ∈ E. Then, an AB type will vote for B a. e.8.
ii) Let (πA, πC) ∈ ∆/extE. Then, an AB type will vote for A.

Figure 2 illustrates RBR as characterized by the Theorem.

The Theorem above ensures that, in particular, an AB type never votes
for B whenever πA > min {πB, πC}, which is a feature that our model shares
with Palfrey’s, as it intuitively should. Let πA < min {πB, πC}, and in specific,
πA < πB ≤ πC , with no loss of generality9. The cutoffs for λAj , j ∈ {B,C},

8RBRs are completely characterized in proposition 2, with the exception of the curves that
give the cutoffs qAB .

9The case πA = min {πB , πC} is analyzed in the next subsection.
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πA

πC

1

11/2

πC=1-2πA

1/2

πC=1/2-πA/2

πC=x+πA

πC=πA

x

1-x
πC=1-x-2πA

πC=(1+x)/2-πA/2

(1+x)/2 πA<min{πB,πC}

Vote B

πA<min{πB,πC}

Vote A

Figure 2: Best responses for an AB−type

are always either 0 or greater than or equal to 1, but λAj is a function of qAj ,
parametrized by qAj

10 : the equations that confirm equilibrium probabilities
therefore depend only on GAj(qAj) and are given in our second main technical
result.
Let qAC =

xAC
lAC(1+xAC)

, with xAC ∈ [0, 1), be (uniquely) determined by

ln
πB +

q
x2ACπ

2
B − 4πAπCx2AC + 4πAπC¡

1− x2AC
¢ ¡
πA + 2

√
πBπC

¢ (7)

= xAC ln
1

2πC − 2xACπC

µ
xACπB +

q
x2ACπ

2
B − 4πAπCx2AC + 4πAπC

¶
Theorem 9 Let Assumptions 1 − 2 hold. Let (πA, πB, πC) be the equilibrium
probabilities of a RNE, such that πA < πB ≤ πC . Let qAC be given uniquely by
7 if πA > 0 and qAC =

1
3lAC

if πA = 0. Then,

10Note that all the results hold even if cutoffs are greater than 1.
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πA

πC

1

11/2

πC=1-2πA

1/2

πC=1/2-πA/2

πC=x+πA

πC=πA

x

1-x
πC=1-x-2πA

πC=(1+x)/2-πA/2

(1+x)/2 πA<min{πB,πC}

Vote C

πA<min{πB,πC}

Vote A

Figure 3: Best responses for an AC-type

πA = lAB(1−GAB(
πC − πA

lAB(1 + πC − πA)
)) + lAC(1−GAC(qAC)) (8)

πB = lBA + lBC + lABGAB(
πC − πA

lAB(1 + πC − πA)
)

πC = lCA + lCB + lACGAC(qAC)

Proof. Let E0 = {(πA, πC) ∈ ∆ : πA < πB ≤ πC}. From Propositions 5 and
7, an AB type votes B if (πA, πC) ∈ E0 ∩ (ECB ∪ E2) and qABlAB < 1

2 and
votes A if (πA, πC) ∈ EAB or qABlAB ≥ 1

2 . Thus, an AB type votes A if
xAB > πC − πA ⇔ qAB > πC−πA

lAB(1+πC−πA) and votes B if qAB < πC−πA
lAB(1+πC−πA) .

The results for qAC obtain directly from Proposition 6, given the symmetry of
the results for qAB and qAC in the exchange of πB for πC and vice-versa.

On one hand, we can check from this characterization of the equilibria that
strategic voting for the second best candidate will be (weakly) decreasing with
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respect to rhizomatic beliefs. In rough terms, a more rhizomatic agent will tend
to vote more often for her preferred candidate.
On the other hand, this Theorem will allow us to calculate the set of possible

equilibria for each polity. In fact, an equilibrium always exists.

Lemma 10 Under Assumptions 1 and 2, there is at least one Duvergerian RNE
for each polity.

Proof. It is straightforward to check that, under Assumption 1, there are at
least four types jk such that j, k ∈ {A,B,C} : j 6= k for which ljk < 1

3
11 . In

particular, there must be at least one j such that ljk < 1
3 and ljl <

1
3 . Without

loss of generality, let lAB < 1
3 and lAC < 1

3 .
There are three possible Duvergerian outcomes. Again without loss of gen-

erality, let lBA + lBC + lAB < lCA + lCB + lAC . The Duvergerian outcome
where A loses would then be such that πA < πB ≤ πC , πA = 0 and πC > 1

2 .
We have that qAC = 1

3lAC
> 1 and therefore GAC(qAC) = 1. Moreover,

πC−πA
lAB(1+πC−πA) =

πC
lAB(1+πC)

> 1 ⇔ πC > lAB
1−lAB since lAB

1−lAB < 1
2 < πC .

Therefore, GAB(
πC−πA

lAB(1+πC−πA)) = 1. But then from 8 we have πA = 0, πB =

lBA + lBC + lAB and πC = lCA + lCB + lAC and the equilibrium holds.

We therefore conclude that at least one Duvergerian equilibrium will always
remain in this setting. On one hand, this seems to reinforce Palfrey’s [21]
conclusion. On the other hand, Palfrey concluded that there would always be
three two-party equilibria such that each party would lose in exactly one of them
regardless of the preferences. Our next step is to investigate whether equilibrium
selection is possible in our model and whether non-Duvergerian outcomes can
also arise.

Notice that a possible computational drawback of our model might result
from the fact that 7 does not have a closed form solution for threshold qAC .
However, numerical computations need not allow for general distributions of
RB. Since RNE conditions depend only on Gjk(qjk), j = A,B,C, the properties
of RNE can be analyzed, with no loss of generality, using only simple discrete
distributions Hjk(.) for which

Hjk(qjk) =

½
pjk qjk = 0
1− pjk qjk = 1

(9)

This procedure brings about two main advantages: the simplification of RNE
computations, since 8 allow for a straightforward check of RNE conditions; and
most importantly, an analysis of implications of possible correlations among
types and beliefs.
After equilibrium probabilities are computed, together with values for the

relevant cutoffs, these will remain the equilibria for any distribution that leads
to the same accumulated probability mass at each cutoff.
11 If Assumption 1 were relaxed, we could have polities for which only three types would

satisfy ljk < 1
3
. However, the result would still hold a.e.
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4 Examples and applications
This section analyzes RNE properties for some pertinent examples and draws
general insights from our model.

Example 1

Let lCA ≥ 1
2 and pCA = 0. From Theorem 1, it is clear that a CA type votes

C ⇒ πC ≥ 1
2 . C therefore wins, regardless of what A and B types do.

Therefore, if there is a majority of agents with the same preference order-
ing, the Condorcet winner will be selected as long as the agents are rhizomatic
enough. Whereas Palfrey [21] concludes that any candidate can lose (with zero
votes) in a large election under Plurality Rule, our model eliminates the possi-
bility of candidate C being defeated.

Example 2

Let pjk = 0 for all j, k ∈ {A,B,C} : j 6= k. Consider the following polity:
lAB lAC lBA lBC lCA lCB
0.01 0.14 0.4 0 0.45 0

In this case, preferences are single-peaked and we have a unique equilib-
rium characterized by: πA = 0
πB = 0.41
πC = 0.59

and qAC ' 2.381 and πC−πA
lAB(1+πC−πA) ' 37.107.

On one hand, this example suffices to show that equilibrium selection can
arise depending on the preferences and rhizomatic beliefs. On the other hand,
this example shows us that a Condorcet winner may not win in the unique
equilibrium prediction: in fact, A would be the Condorcet winner in this case.

Example 3

Let pjk = 0 for all j, k ∈ {A,B,C} : j 6= k. Consider the following polity:
lAB lAC lBA lBC lCA lCB
0.15 0.18 0.3 0.01 0.35 0.01

In this case, we have three equilibria, one of which is not Duvergerian: πA = 0.33
πB = 0.3
πC = 0.37

and qBC ' 1.501 and πC−πB
lBA(1+πC−πB) ' 0.218.

We can conclude that even though at least one equilibrium satisfies Du-
verger’s Law, there may be equilibria where Duverger’s Law may fail to hold.
In this case, BA types vote B because they are rhizomatic; otherwise, they
would vote A and lead to the victory of the Condorcet winner.
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Example 4

Let pjk = 0 for all j, k ∈ {A,B,C} : j 6= k. Consider the following polity:
lAB lAC lBA lBC lCA lCB
0.04 0.18 0.1 0.21 0.34 0.13

In this case, we have two possible equilibria, one of which is not Duverg-
erian: πA = 0.18
πB = 0.35
πC = 0.47

and qAC ' 0.780 and πC−πA
lAB(1+πC−πA) ' 5.620 and

 πA = 0
πB = 0.35
πC = 0.65

and qAC ' 1.852 and πC−πA
lAB(1+πC−πA) ' 9.848

In this case, we can confirm that the model allows for equilibrium selection
and for non-Duverger outcomes. Moreover, even though uniqueness of equilib-
rium is lost, we do have a unique prediction with respect to the ordering of
candidates.

Example 5

Let pCA = pCB = 0 and let pjk = 1 for j ∈ {A,B}, k ∈ {A,B,C} : k 6= j.

Consider the following polity:
lAB lAC lBA lBC lCA lCB
0.1 0.28 0.06 0.2 0.01 0.35

In this case, we have two Duvergerian equilibria: πA = 0
πB = 0.36
πC = 0.64

and qAC ' 1.190 and πC−πA
lAB(1+πC−πA) ' 3.902 and

 πA = 0.44
πB = 0
πC = 0.56

and qBC ' 1.667 and πC−πB
lBA(1+πC−πB) ' 5.983.

This example is particularly informative with respect to the importance of
the correlations between preferences and beliefs. If CA-types and CB−types
were not rhizomatic, any Duvergerian equilibrium might arise. The equilibrium
where C would be defeated is ruled out due to the rhizomatic beliefs. Whereas
agents who prefer candidates A or B are easily willing to vote for their second
preference, that is not the case with voters who prefer C. Therefore, it is pos-
sible for C to ensure the win by emphasizing group identity and stimulating
rhizomatic thinking. In many instances, this is the type of behavior that can
be observed in campaigns that call for strategic voting.
It is worth remarking that a reversal of lAB and lAC would lead the first

equilibrium to disappear and be replaced by an equilibrium where:
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 πA = 0
πB = 0.54
πC = 0.46

and qAB ' 1.190 and πB−πA
lAC(1+πB−πA) ' 3.506.

The main conclusion we can derive from this example is that the distribution
of preferences is also crucial to realize whether political strategies should strive
to foster group identity around a given candidate.

Example 6: The 1992 US Presidential Election

In the 1992 US presidential election, Bill Clinton (C) received 43% of the
popular vote, George Bush (B) 37, 4% and Ross Perot (P ) 18, 9%, in a
total of 99.3%.

The US president is elected with at least 270 votes from the Electoral College
and not on a simple PR basis, which may have repercussions on strategic voting
behavior. Still, in 1992 the Electoral College elected representatives in each
state on a winner-takes-all simple PR basis. Furthermore, inspection of the
popular vote in each state reveals that Duverger’s Law failed to hold in the
large majority of states. In Iowa, for instance, the results were almost an exact
match of the nationwide popular vote: 43.3% of the votes for Clinton, 37.3%
for Bush and 18.7% for Perot in a total of 99, 3%.
For simplicity, and since qualitative results do not depend on the exact equi-

librium probabilities, we use nationwide results in what follows. The purpose of
this exercise is to analyze how RB might help explain the observed equilibrium
and identify the determinants for such voting behavior.
Note that, in empirical cases, equilibrium probabilities are known instead of

the distribution of preferences: we discuss the assumptions we make on prefer-
ences after we analyze the example. Furthermore, and since there were other
candidates receiving votes, an exact analysis would require the use of a multino-
mial model with more than three alternatives: for this discussion, we normal-
ize equilibrium probabilities to add up to 1 in the trinomial model. Let then
πC = 0.433, πB = 0.377, and πP = 0, 190 denote the equilibrium probabilities.
It has been argued that Perot may have been partly responsible for Bush’s

defeat. The claim is that a majority of PB types still voted for Perot, whereas
the majority of PC types shifted their vote to Clinton. Applying the previous
results to these equilibrium probabilities, Theorem 9 yields πC−πP

lPB(1+πC−πP ) =
0.433−0.19

lPB(1+0.433−0.19) and from 7 xPC = 0.19602⇔ qPC lPC = 0.16389. Hypothesize,
for instance, that lBP + lBC = 0.36, lCP + lCB = 0.34, lPB = 0.207 and
lPC = 0.093. Then, all PC types have qPC < 0.163 89

lPC
= 0.163 89

0.093 = 1.7623, so
that πC = lC + lPC = 0.433. Also, πB = lB + αlPB = 0.36 + 0.207α = 0.377⇔
α = 0.082. Since πC−πP

lPB(1+πC−πP ) = 0.94444, as long as GPB(0.944 44) = 0.082,
the equilibrium is sustained.
Note that, clearly, a Duvergerian outcome would give the victory to Bush,

since lBP + lBC + lPB = 0.36+0.207 = 0.567 > lCP + lCB + lPC = 0.433. Also,
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under sincere voting, Clinton would also have lost to Bush: lC = 0.34 < lB =
0.36.
Another interesting feature of the hypothesized distribution of preferences,

is that the fraction of Perot supporters who prefer Clinton in second place are
less than half of those that prefer Bush in second place. The key is that they
are just enough voters to make Clinton win, but also few enough voters such
that they vote Clinton no matter how rhizomatic they may be. In fact, if this
number were large enough, rhizomatic PC types might prefer to vote Perot,
breaking the equilibrium. It is worth stressing that what allows Clinton to win
in this scenario is not just the fact that there are just enough PB types but also
that most of them are very rhizomatic.
Remembering that RT captures the notion of group-identity, and assuming

the hypothesized distribution of preferences to hold approximately, the outcome
of the 1992 US presidential election might be at least partially explained by this
rationale: Most of Clinton and Bush supporters ranked Perot second and had a
strong feeling of group-identity. A majority of Perot supporters preferred Bush
to Clinton, again with a strong feeling of group-identity. The number of Perot
supporters preferring Clinton to Bush was smaller but nonetheless high enough
to make them anticipate they were more likely to be pivotal for Clinton than
for Perot. In that case, PC types should shift their vote to Clinton and PB
types stick with Perot. And this may indeed be part of the story of the 1992
US presidential elections.

We can conclude from these examples that:
i) for given distributions of types, there is equilibrium selection, in the sense

that some of Palfrey’s two-party equilibria are eliminated; the equilibrium may
be unique (and there are also cases where the equilibrium winner can be uniquely
determined even if uniqueness of equilibrium is lost); namely, whenever at least
half of the population share the same preferences, then their preferred candidate
wins the election as long as those voters are sufficiently rhizomatic;

ii) Duverger’s Law may break and that can help explain empirically observed
equilibrium outcomes;

iii) Correlations between preferences and beliefs are the key determinants
of equilibria. In any case, the diversity of possible equilibrium outcomes that
may result from combining different distributions of preferences and RB requires
further analysis.

5 Conclusions
We introduce rhizomatic thinking in a pivotal-voter model under Plurality Rule.
This is to the best of our knowledge the first time an alternative to the assump-
tion of individual rationality is introduced in pivotal-agent games. Our rhi-
zomatic assumption allows any agent i to have an exogenous rhizomatic belief
qi as to the proportion of types with the same preference ranking that i believes
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will take the same action as she does12. Among several other behavioral as-
sumptions, RT captures the feeling of group-identity, and provides a horizontal
notion of rationality capable of encompassing individual as well as more collec-
tive notions of rationality. This assumption impacts strategic behavior, since
now an agent may perceive her pivot probabilities to be non-vanishing as the
number of voters grows large. We find that caeteris paribus vote manipulation
is (weakly) decreasing in rhizomatic beliefs.
In our model, equilibria always exist and can be determined for any distri-

bution of preferences and rhizomatic beliefs. In particular, unique equilibrium
outcomes result for certain distributions of preferences and types. Namely, if
an alternative is preferred by at least one half of the population with the same
preference ordering, then it will always be selected if that segment of the popu-
lation is fully rhizomatic. This conclusion eliminates Duvergerian equilibria in
which such an alternative is defeated.
A key result of our model is that Duverger’s Law is violated: there are polities

with non-Duvergerian equilibrium outcomes. This result cannot be derived from
existing models in which individual rationality is not relaxed but it allows us,
for instance, to provide a rationale for the three-party equilibrium outcome of
the 1992 US presidential election.
Our model also suggests that there is room for an in-depth analysis of corre-

lations between preferences and rhizomatic beliefs, and that this analysis may
prove to be useful for political strategists who may or may not wish to enhance
feelings of group identity and to call for strategic voting
Other directions for future research include a global games approach that

would allow for uncertainty with respect to each agent’s own rhizomatic belief
and own class of like-minded others, leading RBR to have a statistical nature
rather than a deterministic one.
Also, the methodology we present for the determination of asymptotic RNE

can be generalized to any number of candidates, provided the multinomial dis-
tribution is used.
More importantly, the results presented for PR can be both positively and

normatively compared with those for other aggregation rules such as Approval
Voting (AV). Palfrey argues that the implications of strategic voting are not well
understood for AV. Although this claim was made before the contributions of
Roger Myerson towards a better understanding of the implications of strategic
voting under AV in Poisson-Myerson environments, it is still true that there is no
direct comparison in the literature between PR and AV in a multinomial setting.
In a companion paper, we provide such a comparison for both individually
rational and rhizomatic agents.

12We assumed the class of like-minded others to be the class of agents with the same
preference ranking.
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A On Large Deviations

We first state Varadhan’s Lemma.
The reader can find the omitted definitions on den Hollander [14], for in-

stance.

Varadhan’s Lemma: Let (PN ) be a sequence of probability measures that
satisfy the Large Deviation Principle (LDP) on χ with rate N and rate function
I. Let F : χ→ R be a continuous function that is bounded from above. Then,

lim
N→∞

1

N
ln

Z
χ

exp(NF (x))PN (dx) = sup
x∈χ

[F (x)− I(x)]

We now establish the main result from large deviations to be used in the
proof of Proposition 6.

Lemma 11 Let Assumptions 1 − 2 hold. Let voter i be an AB type with q >
0. Let πj > 0, j = A,B,C. Let (πA, πC) /∈ Ejk. Then, lim

O→∞
1
O ln p

N
jk =

− sup
(a0,c0)∈Ejk

I(a0, c0).

Proof. Let χ = Ejk. Let F (x) = 0. Let (PN ) be the sequence of probability
measures that assigns probability fN (aN , cN ) = O!

aN !(O−aN−cN )!cN !π
aN
A πO−aN−cNB πcNC

to each corresponding (aNO , cNO ) ∈ Ejk, and zero otherwise. Let a0 = aN
O , c0 = cN

O .

Then, I(a0, c0) = a0 ln a0
πA
+ (1 − a0 − c0) ln (1−a

0−c0)
πB

+ c0 ln c0
πC

, (a0, c0) ∈ Ejk, is
known to be the unique (strictly convex, lower semi-continuous with compact
level sets) rate function associated with (PN )13.
Let I(S) = inf

x∈S
I(x),∀S ⊂ ∆.

13 See, for instance, den Hollander [14], pp. 29-34.
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Since lim
O→∞

1
O ln f(., .) = −I(., .) ⇒ lim sup

O→∞
1
O lnPN (C) ≤ −I(C),∀C ⊂ ∆

closed ∧lim inf
O→∞

1
O lnPN (D) ≥ −I(D),∀D ⊂ ∆ open, (PN ) satisfies the LDP on

∆14.
Then, we can apply Varadhan’s’ Lemma to obtain

lim
O→∞

1
O ln p

N
jk = lim

O→∞
1
O ln

Z
Ejk

PN (dx) = sup
(a0,c0)∈Ejk

− I(a0, c0).

B Proof of Proposition 6

Proof. Let I(a0, c0) = a0 ln a0
πA
+(1−a0−c0) ln (1−a0−c0)πB

+c0 ln c0
πC
be the (unique)

rate function of the trinomial distribution, where j0 ≥ 0 is the sample mean of
jN , j0 = jN

O , jN = aN , bN , cN , a0 + b0 + c0 = 1, where b0 = 1 − a0 − c0 was
used in the expression for I, and 0 ln 0

πj
is conventionally defined to be 0 for all

πj ∈ [0, 1].
i) If MN

AB ≥ ON
AB, voting for A yields a+MN

AB ≥ max {b, c}, where equality
obtains only if a = 0, max {b, c} = ON

AB and MN
AB ≥ ON

AB , and voting for B

would be a dominated action. Since lim
N→∞

MN
AB

ON
AB

= qlAB
1−qlAB = x ≥ 1, an AB type

will always vote for A.

For the remaining statements, we consider two cases:

Case 1: Let πj > 0, j ∈ {A,B,C}.
ii) Let (πA, πC) ∈ E1.
Let qlAB < 1

3 . From Lemma 2, lim
O→∞

1
O ln p

N
jk = sup

(a0,c0)∈Ejk
− I(a0, c0).

Note that −I(., .) is strictly concave and continuously differentiable in int∆,
which implies that its level curves are closed and smooth. From lower semi-
continuity of I, sup

(a0,c0)∈Ejk
− I(a0, c0) = max

(a0,c0)∈closure(Ejk)
− I(a0, c0). From strict

concavity and differentiability - since these conditions imply smooth closed level
curves of −I -, the problems

max
(a0,c0)∈closure(ECB)

− I(a0, c0) and max
(a0,c0)∈closure(EAB)

− I(a0, c0)

both admit unique optimizers in the statistically nearest points to −I, and
we can solve:

max
(a0,c0)∈closure(ECB)

− I(a0, c0)⇔

max−I(a0, c0)
s.t.c0 = 1

2 − a0
2

0 ≤ a0 ≤ 1−2x
3

(10)

14The properties verified are precisely the ones that ensure that (PN ) is a sequence of
probability measures that satisfy the Large Deviation Principle (LDP) on χ with rate N and
rate function I.
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max
(a0,c0)∈closure(EAB)

− I(a0, c0)⇔
 max−I(a0, c0)

s.t.c0 = 1− x− 2a0
1−2x
3 ≤ a0 ≤ 1−x

2

(11)

Note that pNAC << pNCB and pNAC << pNAB, since all points in EAC are statis-
tically more distant from (πA, πC) ∈ E1 than are the optimizers of 10 and of
11.
We now solve both maximization problems for values of (πA, πC) ∈ E1, for

which the unique argmax
(a0,c0)∈closure(Ejk)

−I(a0, c0) is not any of the extreme points
of the line segments. Note that the strict concavity of −I and the smoothness
of its closed level curves imply that these optimizers are the tangency points
between a level curve of −I and the line segments.
Trivially, if (πA, πC) ∈ closure(ECB), then lim

O→∞
1
O ln p

N
CB = 0 and an AB

type votes B, and if (πA, πC) ∈ closure(EAB), then lim
O→∞

1
O ln p

N
AB = 0, and an

AB type votes A.
We now solve the generic problem½

min I(a0, c0)
s.t.c0 = ma0 + y

(12)

The Lagrangean is L(a0, c0, µ) = a0 ln a0
πA
+ (1− a0 − c0) ln (1−a

0−c0)
πB

+ c0 ln c0
πC
+

µ(ma0 + y − c0), and the first order conditions (FOCs) are
∂L
∂a0 = ln a

0 + 1− lnπA − ln(1− a0 − c0)− 1 + lnπB +mµ = 0
∂L
∂c0 = − ln(1− a0 − c0)− 1 + lnπB + ln c0 + 1− lnπC − µ = 0

∂L
∂µ = ma0 + y − c0 = 0

(13)

The solution (a∗, c∗, µ∗) is given by the following equivalent conditions
(ma∗+y)ma∗

(1−y−(1+m)a∗)m+1 =
πAπ

m
C

π1+mB

c∗ = ma∗ + y

µ∗ = ln
³

c∗πB
(1−a∗−c∗)πC

´ (14)

and

I(a∗, c∗) = ln

"µ
1− a∗ − c∗

πB

¶1−y µ
c∗

πC

¶y#
= ln[(

a∗

πA
)(

1−y
1+m )(

c∗

πC
)(

m+y
1+m )] (15)

Replacing m = −12 and y = 1
2 , the solution for 10 is given by

a∗ =
πA

πA + 2
√
πB
√
πC

(16)

c∗ =

√
πB
√
πC

πA + 2
√
πB
√
πC

ICB(a
∗, c∗) = ln

1

πA + 2
√
πBπC
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Replacing m = −2 and y = 1− x, the solution for 11 is given by

a∗ =
1

π2C − 4πAπB

µ
1

2
πC

q
x2π2C + 4πAπB − 4x2πAπB− (17)

−2πAπB − 1
2
xπ2C + 2xπAπB

¶
c∗ =

πC
π2C − 4πAπB

µ
πC −

q
x2π2C − 4πAπBx2 + 4πAπB

¶
IAB(a

∗, c∗) = ln

µ
1

π2C − 4πAπB

µ
πC −

q
x2π2C − 4πAπBx2 + 4πAπB

¶¶
×

×
µ

1

2πB − 2xπB

µ
xπC +

q
x2π2C − 4πAπBx2 + 4πAπB

¶¶x

From 2, an AB type will vote for A as long as λAB ≤ λAB = lim
N→∞

1+
pNAC
pN
AB

1+
pN
CB
pN
AB

.

Now, if ICB(a∗, c∗) < IAB(a
∗, c∗), lim

N→∞
pNCB
pNAB

= ∞ and λAB = 0, and if

ICB(a
∗, c∗) > IAB(a

∗, c∗), lim
N→∞

pNCB
pNAB

= 0 and λAB = 1, since lim
N→∞

pNAC
pNAB

= 0 -

any point in closure(EAC) is statistically more distant than argmax
(a0,c0)∈closure(EAB)

−I(a0, c0), for all (πA, πC) ∈ E1∩int∆. Solving ICB(a∗, c∗) = IAB(a
∗, c∗) yields

1

πA + 2
√
πBπC

=

µ
1

π2C − 4πAπB

µ
πC −

q
x2π2C − 4πAπBx2 + 4πAπB

¶¶
×

×
µ

1

2πB − 2xπB

µ
xπC +

q
x2π2C − 4πAπBx2 + 4πAπB

¶¶x

⇔ ln
πC +

q
x2π2C − 4πAπBx2 + 4πAπB¡

1− x2
¢ ¡
πA + 2

√
πBπC

¢
= x ln

1

2πB − 2xπB

µ
xπC +

q
x2π2C − 4πAπBx2 + 4πAπB

¶
From strict convexity of I, and from the fact that I has closed and smooth
level-curves, IAB(a∗, c∗) increases in 1 − x, that is, decreases in x = qlAB

1−qlAB ,
which is strictly increasing in q. Therefore, IAB(a∗, c∗) decreases in q.

Hence, lim
N→∞

pNCB
pNAB

=

½ ∞, q < q
0, q > q

, where q is given by 7, and we obtain the

cutoff

λAB = lim
N→∞

1 +
pNAC
pNAB

1 +
pNCB
pNAB

=

½
0, q < q
1, q > q

.
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Hence, an AB type will vote for A if q > q and for B if q < q.
If qlAB ∈

£
1
3 ,

1
2

¢
, E1 = {(πA, πC) ∈ ∆ : πB ≥ x+ πA} and in any level curve

tangent to a point in c0 = 1 − x − a0, I is smaller than ICB(a
∗, c∗). Thus,

ICB(a
∗, c∗) > IAB(a

∗, c∗) and an AB type will vote for A.
iii) Let (πA, πC) ∈ E2.

Let qlAB < 1
2 . The proof goes exactly as in ii), only now lim

N→∞
pNAB
pNCB

= 0,

since any point in closure(EAB) is more distant from (πA, πC) ∈ E2 than
argmin

(a0,c0)∈closure(ECB)
I(a0, c0). Also, if (πA, πC) ∈ closure(ECB), then lim

O→∞
1
O ln p

N
CB =

0 and anAB type votesB, and if (πA, πC) ∈ closure(EAC), then lim
O→∞

1
O ln p

N
AC =

0, and an AB type votes A. We now solve

max
(a0,c0)∈closure(ECB)

− I(a0, c0)⇔


max−I(a0, c0)
s.t.c0 = 1+x

2 − a0
2

0 ≤ a0 ≤ 1−x
3

(18)

max
(a0,c0)∈closure(EAC)

− I(a0, c0)⇔
 max−I(a0, c0)

s.t.c0 = x+ a0
1−x
3 ≤ a0 ≤ 1−x

2

(19)

Replacing m = −12 and y = 1+x
2 in 14, the solution for 18 yields

a∗ = πA
πA −

p
x2π2A + 4πBπC − 4x2πBπC

π2A − 4πBπC
(20)

c∗ =
1

2

πA
p
x2π2A + 4πBπC − 4x2πBπC − 4πBπC + xπ2A − 4xπBπC

π2A − 4πBπC
ICB(a

∗, c∗) = ln

µ
1

π2A − 4πBπC

µ
πA −

q
x2π2A − 4πBπCx2 + 4πBπC

¶¶
×

×
Ã
xπA +

p
x2π2A + 4πBπC − 4x2πBπC
2πC (1− x)

!x

Replacing m = 1 and y = x in 14, the solution for 19 yields

a∗ =
1

π2B − 4πAπC

µ
1

2
πB

q
x2π2B + 4πAπC − 4x2πAπC− (21)

−2πAπC − 1
2
xπ2B + 2xπAπC

¶
c∗ =

1

2

πB
p
x2π2B + 4πAπC − 4x2πAπC − 4πAπC + xπ2B − 4xπAπC

π2B − 4πAπC
IAC(a

∗, c∗) = ln

µ
1

π2B − 4πAπC

µ
πB −

q
x2π2B − 4πAπCx2 + 4πAπC

¶¶
×

×
Ã
xπB +

p
x2π2B − 4πAπCx2 + 4πAπC
2πC(1− x)

!x
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Due to the strict convexity of I, and to the smoothness of its closed level
curves, ICB(a∗, c∗) = IAC(a

∗, c∗) has a unique solution. Since ICB(a
∗, c∗)

and IAC(a
∗, c∗) are symmetric in the exchange of πB and πA, ICB(a∗, c∗) =

IAC(a
∗, c∗)⇒ πB = πA

15. Hence,

λAB = lim
N→∞

pNAB
pNCB

+
pNAC
pNCB

pNAB
pNCB

+ 1
=

½ ∞, πA > πB
0, πA < πB

and an AB type votes A if πA > πB and votes B if πA < πB.

iv) Let (πA, πC) ∈ E3
16. Then,

λAB = lim
N→∞

1 +
pNAC
pNAB

1 +
pNCB
pNAB

≥ 1, since lim
N→∞

pNCB
pNAB

= 0

.
Note that min

(a0,c0)∈closure(ECB)
I(a0, c0) > min

(a0,c0)∈closure(EAB)
I(a0, c0).

Case 2: In order to complete the proof, we must establish the RBR in case
any πj is zero.

ii) Let πA = 0. Then, I(c0) = (1−c0) ln (1−c
0)

πB
+c0 ln c0

πC
is the rate function of

the binomial distribution. E1 simplifies toE1 =
©
πC : πC ≤ 1

2 ∧ πC ≤ 1− x ∧ x < 1
ª

and problems 10 and 11 respectively reduce to
½
max−I(c0)
s.t.c0 = 1

2

and
½

max−I(c0)
s.t.c0 = 1− x

.

If 1− x > 1
2 ⇔ x < 1

2 , then I(12) < I(1− x) and an AB type votes for B. Con-
versely, if x > 1

2 , an AB type votes for A.
Let πC = 0. An AB type votes A: C gets zero votes and voting for B would

be a dominated action.

iii) Let πA = 0. E2 =
©
πC : πC ≥ 1+x

2 ∧ πC ≥ x ∧ x < 1
ª
and problems 18

and 19 respectively reduce to
½
max−I(c0)
s.t.c0 = 1+x

2

and
½
max−I(c0)
s.t.c0 = x

. If 1+x2 >

x⇔ x < 1, then I(1+x2 ) < I(x) and an AB type votes for B. As established in
i), if x > 1, an AB type votes for A.
Let πB = 0. Then an AB type votes A: since a ≥ b = 0, if by voting for A

an AB type can not ensure that A beats C, then B will also lose to C with her
votes, and voting for B would be a dominated action.

v) If πA = πC = 0⇒ c = 0, pNCB = 0 and from Lemma 1 an AB type votes
A.
If πA = 0 and πC = 1⇒ c = O, b = 0, pNCB = 0, since b = 0 ≥ c−M > 0 is

impossible, and from Lemma 1 an AB type votes A.
15Note that Lagrange multipliers are µ∗CB = µ∗AC =

= lnπB
πA x2π2

A
+4πBπC−4x2πBπC−4πBπC+xπ2A−4xπBπC

πC πA x2π2
A
+4πBπC−4x2πBπC−4πBπC−xπ2A+4xπBπC

.

16Note that πA > 0.
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This completes the proof.
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