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Abstract

In a Yaari-Blanchard overlapping generations endowment economy, and

drawing on the equivalence between Radner (R) and Arrow-Debreu (AD) equi-

libria, we prove that equilibrium AD prices have an explicit representation as

a double integral equation. This allows for an analytic characterization of the

relationship between life-cycle and cohort heterogeneity and asset prices. For

a simple distribution, we prove that bubbles may exist, and derive conditions

for ruling them out.
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1 Introduction

The main difficulty in modelling overlapping generation equilibrium economies are

related to the consistent modelling of the dimensions of the income distribution,

along the life-cycle, along age-income profiles for every moment in time, and be-

tween different cohorts. This poses difficulties in defining a consistent Arrow-Debreu

equilibrium, as was already noted by Shell (1971).

In the continuous time overlapping generations literature there are two main

strands of models, following Yaari (1965)- Blanchard (1985) uncertain lifetime model,

and Cass and Yaari (1967) finite lifetime model.

As in most continuous time OLG literature, we follow Yaari (1965)- Blanchard

(1985) framework. It solves the consistency problem by dealing with a Radner, or

sequential market equilibrium, economy, and by assuming a particular demographic

structure. The consequence of this is that the age-structure of endowments has no

effect on asset prices. We try to overcome this difficulty by generalising demograph-

ics, though still assuming a constant population, and by drawing on the equivalence

between Radner (R) equilibria with complete asset markets and Arrow-Debreu (AD)

equilibria.

In both R and AD economies agents are heterogeneous by age, and perform

intertemporal allocations of resources by trading with members of other generations.

In a R economy there is a continuum of sequential spot asset markets, and in an

AD economy there is a system of simultaneous forward real markets. In the last

economy, consistency between contracts available to different cohorts are achieved
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by assuming that all prices are formed at an ”Archimedian” time t = 0 1. We prove

that the general equilibria in both economies are equivalent. We also prove that

equilibrium AD prices have a representation as an integral equation. By assuming

a simple particular case of heterogeneous age-distribution of endowments, where all

endowments are distributed at a single age α, we prove that equilibrium prices exist,

but may display rational bubbles depending on the relationship of α and a critical

value which depends on the elasticity of intertemporal substitution 2

Finite lifetime models of the Cass and Yaari (1967) contribution have been

recently revived. For example, Demichelis and Polemarchakis (2007) present an

Arrow-Debreu (AD) endowment equilibrium with a structure similar to the one pre-

sented here, but within the finite lifetime framework. Though we reach a similar

solution for AD prices, our approach allows for a simpler characterization of equilib-

rium prices, and, in particular for an explicit derivation of conditions for existence

of speculative bubbles.

In section 2 we present the R and the AD equilibria and proves their equivalence,

in section 3 we prove the existence of AD prices, and in section 4 we characterise

AD prices and present conditions for ruling out bubbles.

2 Radner and Arrow-Debreu equilibria

Consider an overlapping-generations (OLG) economy with an age-structured de-

mography and a constant aggregate population. At each point in time people are

1See Geanakoplos and Polemarchakis (1991) and Geanakoplos (2008).
2We deal with CRRA utility. For logarithmic utility Brito and Dilão (2006) proves that this

approch can be extended to realistic Mincerian distribution functions.
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distributed among homogeneous cohorts. There is inter-cohort heterogeneity be-

cause the representative members of different cohorts are in different phases of

their life-cycles. The dimension of a cohort t0 at time t = t0 + a is denoted by

n(a, t) = n(a, t0 + a), where t0 is the time of birth, and a ∈ [0,∞) is the age of the

representative member of a cohort. In a closed economy, the dimension of cohort t0

is n(0, t0) at the time of birth, and decays along the rest of the life-cycle by mor-

tality. Then n(a, t) = n(0, t− a)e−
R a

0 µ(s,t)ds, where µ(a, t) > 0, is the instantaneous

probability of death for people with age a at time t. Total population at time t is

N(t) =
∫

∞

0
n(a, t)da.

We assume that both the number of new-borns and the probability of death are

time-independent, n(0, t0) = n0 and µ(a) > 0. However, we do not introduce the

Blanchard (1985) simplifying assumptions: µ(s) = µ = 1/n0 constant.

The previous assumptions have two implications: First, they imply that the

decay factor of a cohort along the lifetime, π(a) ≡ e−
R a

0
µ(s)ds, only depends on age.

Given intra-cohort homogeneity then π(a) also represents the probability of survival

at age a for individual agents. Second, they imply that n(a, t) = n0π(a) is time-

independent but age-dependent, and the aggregate population n0

∫

∞

0
π(a)da = N is

constant.

We hypothesise a single-good endowment economy, in which the representative

member of cohort t0 is entitled to the lifetime exogenous stream of endowments

y(t0) = {y(a, t0 + a), a ∈ R+}, and there are no intergenerational transfers (in

particular, no bequests). Therefore, the total endowment for the economy at time

t, Y (t) =
∫

∞

0
n(a, t)y(a, t)da, is also exogenous.
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The representative member of cohort t0 has preferences of the Yaari (1965)-

Blanchard (1985) type: she/he has an uncertain lifetime, has an instantaneous prob-

ability of survival at age a equal to π(a), and has an additive expected lifetime utility

functional, over the lifetime path of consumption c(t0) = {c(a, t0 + a), a ∈ R+},

U [c(t0)] = Et0

[
∫

∞

0

u(c(a, t0 + a))R(a)da

]

=

∫

∞

0

u(c(a, t0 + a))R(a)π(a)da, (1)

where R(a) ≡ e−
R a

0
ρ(s)ds is the psychological discount factor with ρ(t) > 0 for all

t ≥ 0.

To complete the characterization of the economy we need to specify the structure

of markets allowing for the intertemporal allocation of resources. We consider two

alternative structures of markets leading to two alternative but equivalent economies:

Radner and Arrow-Debreu.

In a Radner (R) economy there are financial assets, and the institutional struc-

ture is characterised by the existence of a sequence of spot markets for the good and

for financial assets. In addition to a financial asset, paying a rate of return r, there

is also a Yaari (1965) insurance market.

Let w(a, t) denote the real stock of financial wealth for an agent with age a at

time t = t0 + a, using the spot price of the good as a numéraire. The instantaneous

budget constraint is given by the partial differential equation along a characteristic,

∂w

∂a
+
∂w

∂t
= z(a, t) + (r(t) + µ(a))w(a, t), (2)

where the excess of the endowment over consumption, z(a, t) ≡ y(a, t) − c(a, t),
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and the rate of return r(t) are perfectly anticipated. The no bequests assumption

imposes the following boundary constraints

w(0, t0) = lim
a→∞

π(a)w(a, t0 + a)e−
R a

0 r(t0+s)ds = 0. (3)

Definition: The General Equilibrium for the OLG Radner economy is defined by

the pair of densities and trajectories (c∗, r∗) =
(

{c∗(a, t), (a, t) ∈ R2
+}, {r

∗(t), t ∈ R+}
)

,

such that {c∗(a, t0 + a) : a ∈ R+} maximises the intertemporal utility function (1)

subject to restrictions (2) and (3), for all cohorts t0 ∈ R+, and the rate of return

on the financial asset, r∗(t), clears the good market for every t ∈ R+.

The equilibrium condition is

∫

∞

0

c∗(a, t)n(a, t)da =

∫

∞

0

y(a, t)n(a, t)da. (4)

In an Arrow-Debreu (AD) economy there are, instead, forwards real markets in

which contracts for future delivery of the good are traded. In particular, agents

belonging to cohort t0 perform contracts, at the time of birth, for delivery of the

good at every future moment along their lifetimes, such that the intertemporal

budget constraint holds

∫

∞

0

π(a)p(t0, t0 + a)z(a, t0 + a)da = 0, (5)

where p(t0, t0 + a) is the price in the market operating at time t0 for delivery of the

good at time t = t0 + a, for a ∈ [0,∞). In this AD economy, z(a, t0 + a) is the net
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supply of the representative agent of cohort t0 in the market for delivery at time

t = t0 + a.

In a non-OLG AD economy one would assume that all markets would operate

simultaneously at time t = 0, that is at the moment of birth of the representative

dynasty, and there would be an infinite number of markets for delivery in every

future date.

In our OLG AD economy there is a well know consistency problem, between

the simultaneity of the operation of the forward markets and the need for agents

to contract for all delivery of goods on all future moments along their lifetimes. If

contracts are made at the time of birth, the simultaneity of operation of markets at a

single point in time will not be possible because cohorts are continuously being born.

This problem has been solved in the literature (see Geanakoplos and Polemarchakis

(1991) and Geanakoplos (2008), that attributes this idea to I. Fisher) by assuming

that prices faced by every cohort are consistent to those set at an ”Archimedian

time” t = 0. At this date all prices p(0, t) = p(t), for t ∈ R+ are determined. Then,

prices available to cohort t0 should verify p(t0, t) = p(t)/p(t0), for t ≥ t0.

Definition: The General Equilibrium for the OLG Arrow-Debreu economy,

in which all markets open only at time t = 0, is defined by the pair (c∗, p∗) =
(

{c∗(a, t), (a, t) ∈ R2
+}, {p

∗(t), t ∈ R+}
)

, where {c∗(a, t0 + a) : a ∈ R+} maximises

the intertemporal utility function (1) subject to restriction (5), for all cohorts t0 ∈

R+, where p∗(t0, t) = p∗(t)/p∗(t0), and the AD price p∗(t) clears the market for

every future t ∈ R+.

Note that the equilibrium condition is formally equation (4).
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Proposition 1 Let

p(t) = e−
R t

0 r(s)ds, t ∈ R+. (6)

then the OLG-Radner and the OLG-Arrow-Debreu equilibria are equivalent.

Proof The solution of equation (2) with conditions (3) is the intertemporal bud-

get constraint
∫

∞

0
e−

R a

0 r(t0+s)dsπ(a)z(a, t0 + a) = 0. This constraint is equivalent to

the constraint for the representative member of a cohort in the AD economy, (5), if

and only if p(t0, t0 + a) = e−
R a

0
r(t0+s)ds or p(t0, t) = e−

R t−t0
0 r(t0+s)ds = e

−
R t

t0
r(s)ds

, or

p(t)/p(t0) = e−
R t

0
r(s)dse

R 0
t0

r(s)ds
. Then, the problems for the representative members

of cohorts t0 are equivalent in both R and AD economies. As the market equilibrium

conditions are formally identical (see equation (4)) for every t ∈ R+, then the two

equilibria are equivalent. 2

3 Determination of equilibrium AD prices

As r(t) = −d ln p(t)/dt for any t ∈ R+, from equation (6), we can establish ex-

istence, uniqueness, and characterise the OLG-R equilibrium from the equivalent

OLG-AD equilibrium. Brito and Dilão (2006) study a similar OLG-AD equilibrium

but assume a logarithmic utility function and derive a representation of the equilib-

rium AD prices as a linear double integral equation. Here, we assume an isoelastic

utility function and get a representation of AD prices as a non-linear double integral

equation.

Proposition 2 Let the Bernoulli utility function be u(c) = (1−σ)−1c1−σ, where

σ > 0. Then equilibrium AD prices, p(t) for t ∈ R+, follow the non-linear double
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integral equation

p(t)1/σ =

∫

∞

0
K(t− a)R(a)1/σπ(a)da
∫

∞

0
y(a, t)π(a)da

, t ∈ R+ (7)

where

K(t− a) ≡

∫

∞

0
y(s, t− a+ s)p(t− a+ s)π(s)ds

∫

∞

0
p(t− a + s)(σ−1)/σR(s)1/σπ(s)ds

.

Proof The optimal consumption for cohort t0 in the OLG-AD economy, when its

representative member has age a, is

c∗(a, t0 + a) =

(

R(a)

p(t0, t)

)1/σ (
∫

∞

0
p(t0, t0 + s)y(s, t0 + s)π(s)ds

∫

∞

0
p(t0, t0 + s)(σ−1)/σR(s)1/σπ(s)ds

)

, a ∈ R+

If we substitute t0 = t−a, aggregate across all cohorts, impose the consistency con-

dition p(τ0)p(τ0, τ1) = p(τ1), and substitute into the equilibrium condition, C(t) =

Y (t), then we get equation (7). 2

In order to solve the integral equation (7) we consider the case of a balanced

growth path with a constant population. In particular, we assume that endow-

ments are separable, but are age-structured, and that the other demographic and

behavioural parameters are age-independent and constant.

Proposition 3 Assume that the endowment density follows y(a, t) = φ(a)eγt,

where φ(a) 6= 0 ∈ L1(R+), and γ ≥ 0. Further assume µ(a) = µ > 0, ρ(a) = ρ > 0.

Assume that the set X ≡ {x : x + η > 0, and x(1 − σ) + η > 0} is non-empty,
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where η ≡ ρ+ µ+ (σ − 1)(γ + µ). Define

S(x) ≡

∫

∞

0

φ(a)e−µa

(

1 −
η + x(1 − σ)

η + x
exa

)

da. (8)

Then, equation (7) has a solution of the form p(t) =
∑n

j=1 kje
(xj−γ)t, where xj ∈

{x ∈ X : S(x) = 0}, for j = 1, . . . , n.

Proof As in Polyanin and Manzhirov (1998, p.325), and in Brito and Dilão

(2006), let the general solution of equation (7) be of type f(t) = ke(x−γ)t, where k

is an arbitrary constant. If we substitute this candidate solution into equation (7)

and assume that x+ η > 0 and x(1−σ)+ η > 0, we find it is equivalent to equation

S(x) = 0, where S(x) is in (7). 2

We call characteristic equation to S(x) = 0. It does not have a closed form

solution for any admissible value of the parameters. However, we can prove existence

of a solution x = 0 ∈ X, with very mild conditions:

Proposition 4 Assume that φ(a) 6= 0, for all a ∈ R+ and that σ > σf ≡

max{0, (γ − ρ)/(µ + γ)}. Then the characteristic equation has at least one root

x = 0.

Proof If φ(a) 6= 0, we see by simple inspection that x = 0 ∈ X is a root of the

S(x) = 0 only if η > 0. But η > 0 if and only if σ > σf . 2

If x = 0 is the unique solution of the characteristic equation then the equilibrium

AD price is p(t) = ke−γt, and the real interest rate is r(t) = γ, for all t ∈ R+, as in an

analogous dynastic non-OLG model. Therefore, prices are asymptotically bounded,

and there are no speculative bubbles.

However, the characteristic equation may have other non-zero roots, depending
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on the type of function φ(.). If there is no root larger than γ, then we would

get limt→∞ p(t) = 0 and limt→∞ r(t) > 0: prices are bounded and the asymptotic

interest rates are positive. If there is at least one root which is greater than γ then

limt→∞ p(t) = ∞ and limt→∞ r(t) < 0, and we say that rational speculative bubbles

would exist.

4 AD prices and age-heterogeneity of endowments

Our approach, differently from Blanchard (1985), allows for the characterization

of the consequences of different age-distribution of incomes ( or of age-dependent

shocks upon it) on the dynamics of asset prices. In particular, as all roots different

from zero depend on φ(a), we may relate the existence or not of speculative bubbles

to the age-distribution of endowments.

Let us consider the simplest age-heterogeneous distribution such that endow-

ments are only received by consumers with a specific age, a = α ≥ 0. Formally,

φ(a) = φ0δ(a− α) where δ(.) is Dirac’s delta function.

At each moment in time, t, the age- distribution of endowments across ages is

totally concentrated on consumer with age α. Therefore, the AD price p(t) clears

the market for time t, in which there is only one cohort in the supply side and all

the other cohorts are in the demand side.

The characteristic equation is now

S(x, α) ≡ η + x− (η + x(1 − σ))eαx = 0, (9)

11



and still does not have a closed form solution. However, we can characterise solutions

as far as the existence of bubbles is concerned:

Proposition 5 Let σf < σ ≤ 1, and α ≥ α1, or 1 < σ < σc, and α ≤ α2, or

σ ≥ σc and α ≤ α1, where

α1 ≡
1

γ
ln

(

ρ+ σ(µ+ γ)

ρ+ σµ

)

, (10)

α2 ≡

{

α : S

(

1

α

[

W0

(

e1+αη/(1−σ)

1 − σ

)

− 1 +
αη

1 − σ

]

, α

)

= 0

}

(11)

αc ≡
1

γ

(

σ − 1

ρ+ σµ
+W0

(

γ

ρ+ σµ
eγ(1−σ)/(ρ+σµ)

))

, (12)

σc ≡ {σ : S(γ, αc(σ)) = 0} (13)

where W0 is the principal branch of the Lambert-W function 3. Then, there are no

speculative bubbles.

Proof If σ > σf then η > 0, and g(x) = 0 will only have roots in the interval

(−η,+∞), if σf < σ ≤ 1, or in the interval (−η,≥ η/(σ − 1)), if σ > 1. As

γ < η/(σ − 1)) then roots x > γ can exist. In the appendix we prove that if

σf < σ ≤ 1, and α ≥ α1, or 1 < σ < σc, and α ≤ α2, or σ ≥ σc and α ≤ α1 then

there are no roots x > γ. 2

Figure 1 illustrates this result by presenting combinations of values for σ and

α such that bubbles are ruled out, for feasible values of the parameters. We see

that if σf < σ ≤ 1 then endowment should be distributed after age α1 which is a

function not only of σ but also of the other parameters µ and γ. If σ > 1 it should

be distributed before age α2 or α1, which also depend on σ, µ and γ.

3Corless et al. (1996).
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In order to have an intuition for this result observe that the characteristic equa-

tion (9) can be written as S(x) =
∫

∞

0
φ(a)n(a)s(x, a)da = 0, where s(x, a) is the

density of net savings, which in this case is equivalent to the density of excess supply

of AD contracts across all ages. Then S(.) represents aggregate savings, or the ag-

gregate excess supply, in every moment in time. Then, AD prices, or interest rates,

are determined such that aggregate supply across all age profiles are zero at every

moment in time. If φ(a) is a degenerate distribution then S(x) = s(x, α) = 0 for any

moment in time. Our previous result suggests that the existence of bubbles, that is

values of x > γ which clear aggregate savings, has not a single relationship with α.

If the elasticity of intertemporal substitution is low (high) an increase (reduction)

in α above a critical value will generate a reduction in net savings which have to be

compensated by an increase in prices associated to all forward contracts to delivery

in the future.

5 Conclusions

A simple generalization of the demography, and a slight change in methodology,

allows us to represent Arrow-Debreu prices for a continuos time OLG economy as

a integral equation. We show that this allows for the study of the effects of age-

dependent endowments and demographics in asset prices. Bubbles can occur for

particular profiles of the age-distribution of endowments and of the intertemporal

elasticity of substitution.
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α

σ1σf σc

αc

α1

α2

Figure 1: Shaded area: values of (σ, α) if γ > ρ such that there are no speculative
bubbles.
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Appendix

In this appendix more detailed versions of some proofs are presented.

Derivation of the instantaneous budget constraint for the OLG-R econ-

omy. The instantaneous budget constraint (2) is a first order partial differen-

tial equation over a characteristic, i.e., it is defined for values of (a, t) such that

da/dt = 1. This is so because the cohort’s ’time’, a, is related to ’universal time’, t,

as t = t0+a, where t0 is the date of birth of a cohort. The financial wealth of an agent

belonging to cohort t0 when it has age a at time t is denoted by w(a, t) = w(a, t0+a).

If we consider a small time interval ∆a = ε the flow budget constraint is,

w(a+ ε, t0 + a + ε) − w(a, t0 + a) = [z(a, t0 + a) + (r(t0 + a) + µ(a))w(a, t0 + a)] ε.

This means that the variation in wealth is equal to the sum of the net inflow of

the good, z(a, t0 + a) = y(a, t0 + a) − c(a, t0 + a), and with the income from asset

holdings, resulting from the market interest rate and from the proceeds from the

Yaari contracts. As

lim
ε→0

w(a+ ε, t0 + a+ ε) − w(a, t0 + a)

ε
=
dw(a, t0 + a)

da
=
∂w

∂a
+
∂w

∂t

dt

da

and da = dt, along a characteristic, then we get the flow budget constraint (2) for

the Radner economy.

Proof of Proposition 1 Equation (2) is a linear first order partial differential
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equation, with has the general solution

w(a, t) = ke
R a

0 r(τ+t0)+µ(τ)dτ +

∫ a

0

e
R a

s
r(τ+t0)+µ(τ)dτ z(s, t0 + s)ds

where k is an arbitrary constant. If we set a = 0, and t = t0, and use the first

boundary condition (3), then we get w(0, t0) = k = 0. If we substitute k, and

multiply both terms by e−
R a

0
r(τ+t0)+µ(τ)dτ , and apply the second boundary condition

(3), we finally obtain

lim
a→∞

w(a, t)e−
R a

0 r(τ+t0)+µ(τ)dτ =

∫

∞

0

e−
R s

0 r(τ+t0)+µ(τ)dτ z(s, t0 + s)ds = 0.

This is the intertemporal constraint for cohort t0 in the R economy. If is equivalent

to the constraint at birth for a cohort living on the AD economy, (5), if and only if

p(t0, t0 + a) = e−
R a

0
r(t0+s)ds. As p(t0, t0 + a) = p(t0, t) = e−

R t−t0
0 r(t0+s)ds = e

−
R t

t0
r(s)ds

,

if prices available for cohort t0 are consistent to the ”Archimedian” prices, then we

get equivalently p(t) = p(t0)p(t0, t) = e−
R t0
0 r(s)dse

−
R t

t0
r(s)ds

= e−
R t

0 r(s)ds. 2

Proof of Proposition 2 To obtain a representation for the AD equilibrium in

terms of the endogenous variables, c(a, t) and p(t) , we solve the cohort’s t0 problem,

aggregate consumption for all cohorts, and use the equilibrium conditions for the

spot and all the forward markets for delivery at (0,∞) which open at t = 0. First,

using the same method as in Brito and Dilão (2006)we set the Lagrangian for a

representative member of cohort t0,

L =

∫

∞

0

(

(1 − σ)−1c(a, t0 + a)1−σR(a) + λp(t0, t0 + a)z(a, t0 + a)
)

π(a)da,
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where R(a) = e−
R a

0
ρ(s)ds and π(a) = e

R a

0
µ(s)ds and λ is a Lagrange multiplier. The

first order conditions are (see Gelfand and Fomin (1963)) are

δL

δc
=

∫

∞

0

(

c(a, t0 + a)−σR(a) − λp(t0, t0 + a)
)

π(a)ψ(a)da = 0 (14)

∂L

∂λ
=

∫

∞

0

p(t0, t0 + a)z(a, t0 + a)π(a)da = 0 (15)

where δL/δc is the functional derivative for a perturbation ψ(a) ∈ L1(R+). As the

first condition, (14), should hold for any perturbation, we get the optimal consump-

tion for any moment along the lifetime of cohort t0,

c∗(a, t0 + a) =

(

λp(t0, t0 + a)

R(a)

)−1/σ

, a ∈ R+.

Condition (15) can be written equivalently as an equality between the mathematical

expectation of the value of the lifetime optimal consumption, measured at the AD

prices for t0, and human wealth , at the moment of birth, c̃(t0) = h(t0), where c̃(t0) ≡
∫

∞

0
p(t0, t0 + a)c∗(a, t0 + a)π(a)da and h(t0) ≡

∫

∞

0
p(t0, t0 + a)y(a, t0 + a)π(a)da. We

can write c̃(t0) = m(t0)λ
−1/σ, where m(t0) ≡

∫

∞

0
p(t0, t0 + a)(σ−1)/σR(a)−1/σπ(a)da.

Then, we get the Lagrange multiplier as λ∗ =
(

m(t0)
h(t0)

)σ

and the optimal instanta-

neous consumption for cohort t0 along its lifetime as a linear function of the human

wealth at birth,

c∗(a, t0 + a) =

(

h(t0)

m(t0)

)(

R(a)

p(t0, t)

)1/σ

, a ∈ R+.

Second, aggregate demand is C(t) =
∫

∞

0
n(a, t)c∗(a, t)da. Using the relationship
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t0 = t−a, the expression for the population density n(a, t) = n0π(a) and the optimal

consumption density just derived, we get

C(t) = n0

∫

∞

0

(

h(t− a)

m(t− a)

)(

R(a)

p(t− a, t)

)1/σ

π(a)da.

where h(t − a) ≡
∫

∞

0
p(t − a, t − a + s)y(s, t − a + s)π(s)ds and m(t − a) ≡

∫

∞

0
p(t− a, t− a+ s)(σ−1)/σR(s)1/σπ(s)ds. If we introduce the consistency condition

between the cohort’s t0 prices and the prices formed in the AD markets at time

t = 0, then p(t− a, t) = p(t)/p(t− a) and p(t− a, t− a+ s) = p(t− a+ s)/p(t− a),

and the aggregate consumption becomes,

C(t) = n0p(t)
−1/σ

∫

∞

0

K(t− a)R(a)1/σπ(a)da.

where

K(t− a) =

∫

∞

0
p(t− a + s)y(s, t− a + s)π(s)ds

∫

∞

0
p(t− a+ s)(σ−1)/σR(s)−1/σπ(s)ds

.

At last, substituting consumption in the equilibrium condition for the AD markets

C(t) = Y (t) = n0

∫

∞
y(a, t)π(a)da, equation (7) results. 2

Proof of Proposition 3 If we introduce in equation (7) the assumptions re-

garding R(a), π(a), and y(a, t), we get the non-linear double integral equation

p(t)1/σ

∫

∞

0

φ(a)e−µada =

∫

∞

0

(

∫

∞

0
φ(s)p(t− a+ s)e(γ−µ)sds

∫

∞

0
p(t− a + s)(σ−1)/σe−

γ+µ

σ
sds

)

e−( ρ+σ(µ+γ)
σ )ada.

(16)

Following the method for solving similar equations in Polyanin and Manzhirov (1998,

p.325), which we used in Brito and Dilão (2006), we conjecture that its general
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solution of equation is a sum of functions of type f(t) = ke(x−γ)t where k is an

arbitrary constant. Making the substitution in equation (16), we get

∫

∞

0

φ(a)e−µa −
ξ1(x)

ξ2(x)

∫

∞

0

φ(a)e−µada = 0

where ξ1 =
∫

∞

0
e−(η+x)/σada and ξ2 =

∫

∞

0
e−(η+x(1−σ))/σada. If η + x > 0 and η +

x(1 − σ) > 0 then those functions are integrable, and

ξ1
ξ2

=
η + x

η + x(1 − σ)
> 0,

which leads to equation (9). The elimination of the dependence on t proves that

our conjecture is right, and the existence of a solution equation (16) depends on the

existence of roots to equation S(x) = 0 verifying η+ x > 0 and η+ x(1− σ) > 0. 2

Proof of Proposition 4 First, observe that X is non-empty if and only if

0 < σ ≤ 1 and x > −η, or if σ > 1, and −η < x < η/(σ − 1). Therefore, if η > 0

(η ≤ 0) then x = 0 belongs (does not belong) to the set of feasible solutions of

equation S(x) = 0. If η > 0, we see, by simple inspection, that x = 0 is a solution

for any choice of the φ(a) function (such that φ(a) 6= 0). The necessary and sufficient

condition for η > 0 is σ > max{0, (γ − ρ)/(γ + µ)}. 2

Proof of Proposition 5 Consider function the characteristic equation S(x) = 0,

in equation (9).

1. Proposition 4 applies here as well: if σ > σf then η > 0 and x = 0 is always

a root of S(x) = 0.

2. We can prove further that, if η > 0, all roots of S(x) = 0 will verify x > −η
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if 0 < σ ≤ 1, or −η < x < η/(σ − 1) if σ > 1. Reasoning by contradiction: (1) if

any σ > σf , and x < −η ≤ 0 then η + x < (η + x(1 − σ))eαx < 0, this implies that

S(x) < 0 for all x < −η, and, therefore S(x) = 0 has no roots in this interval; (2) if

σ > 1 and x ≥ η/(σ − 1) then η + x(1 − σ) ≤ 0 and η + x ≥ ησ/(σ − 1) > 0, and

then S(x) > 0, and S(x) = 0 has no roots in this case.

3. The former result does not exclude the possibility that there are roots of

S(x) = 0 such that x > γ, for any σ > σf . To find conditions for ruling this case

out, we consider separately cases 0 < σ ≤ 1 and σ > 1 and worry only about positive

roots of S(x) = 0.

First case: if σf < σ ≤ 1 then function S(x) is similar to a parabola, because

limx→±∞ S(x) = −∞, limx→−∞ ∂S(x)/∂x = 1, and limx→+∞ ∂S(x)/∂x = −∞.

Therefore, it has one root x = 0 and can have another root in the interval (−η,+∞),

where η > 0, from assumption 1. This is so because the characteristic equation has

only a maximum at x = x∗ and S(x∗) > 0. To prove this observe that ∂S/∂x = 0 if

and only if [α(η+ x(1− σ)) + 1− σ]eαx = 1, which is equivalent to (αx+ y)eαx+y =

ey/(1 − σ) where y ≡ α + η/(1 − σ). If we solve for x we get

x∗ = (W (z) − y)/α =
1

α

[

W

(

1

1 − σ
e

1−σ+αη

1−σ

)

−
1 − σ + αη

1 − σ

]

where, z ≡ ey/(1 − σ), W is the LambertW function(see Corless et al. (1996)).

If 0 < σ < 1 and η > 0 then z > 0 and W (z) = W0(z) > 0 (see again Corless

et al. (1996)). And finally we get S(x∗) > 0 from the properties of the Lambert W

function. In order to have a root 0 < x < γ we only need to determine conditions
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under which S(γ) = S(x)|x=γ ≤ 0 . We readily see that α ≥ α1 ≡
1
γ

ln
(

ρ+σ(µ+γ)
ρ+σµ

)

is

a necessary and sufficient condition for S(γ) = η + γ − (η + γ(1 − σ))eαγ ≤ 0.

Second, if σ > 1 then function S(x) is similar to a cubic polynomial. The

characteristic equation has one, two, or three roots, because limx→−∞ S(x) = −∞,

limx→∞ S(x) = ∞, limx→−∞ ∂S(x)/∂x = 1, and limx→+∞ ∂S(x)/∂x = +∞. The

other roots, in addition to x = 0 should belong to the interval (−η, η/(σ − 1)). As

γ < η/(σ − 1) = γ + (ρ + σµ)/(σ − 1) then we may have roots belonging to the

interval (γ, η/(σ − 1)). Clearly, a necessary condition ruling out roots x > γ is

S(x∗) < 0 and x∗ < γ, or S(x∗) > 0 and x∗ > γ, and S(γ) ≥ 0.

In order to determine x∗ and S(x∗), observe that if σ > 1 then y < 0 and

ey/(1− σ) < 0. In Corless et al. (1996) it is proven that if z < 0 then W (z) has two

branches, the principal branch W0(z) and the branch W−1(z) for 0 > z ≥ −e−1, and

has not real values in the domain z < −e−1. Also, W0(z) ∈ (0,−1), W−1(z) < −1

and that W0(−e
−1) = W−1(−e

−1) = −1. Then, there are no local maxima and

minima if ey/(1 − σ) < −e−1 which is equivalent to α < (σ − 1) (ln (σ − 1) − 2) /η.

This is illustrated in the next figure 2 by area lines below curve W (−1/e). If

α > (σ − 1) (ln (σ − 1) − 2) /η then there are two local maximum or minimum

x∗ = (W0(e
y/(1− σ))− y)/α and x∗

−1 = (W−1(e
y/(1−σ))− y)/α with x∗ > x∗

−1. If,

we have values of α such that S(x∗) = 0, then the highest value of a local extremum

will coincide with a root of S(x) = 0. In particular x∗ = γ and the highest local

extremum will coincide with root x = 0 if and only if S(γ) = S
′

(γ) = S(x∗) = 0.

This is the case if α = αc and σ = σc.

If instead we have S(γ) ≥ 0, S
′

(γ) < 0 then x∗ > γ and there will not be no
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α

σ1σf σc

αc

S(γ) = 0

S
′

(γ) = 0

S(x∗) = 0

W (−1/e)

Figure 2: Curves S(γ) = 0, S
′

(γ) = 0 , S(x∗) = 0 and e(1+αη/(1−σ))(1−σ)−1 = −e−1

and values of (σ, α) such that there are no speculative bubbles.

roots for x > γ if S(x∗) > 0. This case will occur if 1 < σ < σc and α < α2 ≡ {α :

S(x∗(α), α) > 0}.

At last, if S(γ) ≥ 0 and S
′

(γ) > 0 then x∗ < γ and the last condition is not

binding. This case occurs if σ > σc and α < α1
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